ELASTOMERIC INFUSION SYSTEMS: SAFE AND EFFICIENT ADMINISTRATION

OHP-014
Arranz Castella T, Marquez Peiró JF, Jimenéz Torres J, Gaspar carreño M, Moreno Díaz R,
Gorgas Torner MQ
Material Devices Group SEFH Spain

BACKGROUND

Elastomeric infusion systems or infusers have been in use in clinics for more than twenty years. The development of these systems has been a significant advance in the administration of drugs in certain clinical situations, for both outpatients and inpatients. Maintaining a stable plasma concentration of a drug enables greater control of an illness and its symptoms and it improves patients’ quality of life when good integration into patients’ everyday lives is observed.

There are many infusion systems on the market. In some cases, these differ in management principles, but notably in their elastomer composition. All of these factors mean that each infuser can be used to administer different drugs. In the case of 5-fluorouracil (5-FU), it has been shown that administration by continuous infusion is more effective and has fewer adverse effects when these infusion systems are commonly used. However, many studies show differences in the precision of infusion rate due to factors such as 5-FU concentration, temperature, diluents, etc. Patient behavior and lifestyle are also potential safety factors and it is important to adequately train patients on how to manage the infuser correctly.

PURPOSE

Provide general recommendation in the use of elastomeric infusion devices for oncologic patients with continuous infusion of 5-fluorouracil (5-FU) in order to provide an effective and safe way of administering the medication to the outpatient.

MATERIALS AND METHODS

Revision of the technical specifications for all the infusion devices available in the market, as well as review of the research and studies currently available that show differences in the accuracy of infusion speed. These differences are due to factors in the infusion itself (concentration, diluent agent, etc.) and to factors related with the behaviour and life style of the patient.

The sources of the information are the following:
1) Technical datasheets of the different infusion devices: Autofuser, Vessel Fuser, Folfusor, Surefuser, Accufuser and Dosi-Fuser
2) Information from Healthcare Products “Medical devices” – Advise to patients
3) Bibliographic research in PubMed using the key words “elastomeric infusion devices” AND “5-FU infusion” and the resources available through the SEFH Website (Spanish Association of Hospital Pharma)

RESULTS

Most of the elastomeric infusion devices provide an infusion accuracy of +/-15% following the conditions established by the manufacturer.

Other variables affecting the accuracy of the infusion are:
1. Temperature. It modifies the viscosity of the mix. It is estimated that a change in one degree in temperature brings variations in the flow speed of 2-3 %.
2. Viscosity. Viscosity has an inverse effect over flow, and speed decreases when viscosity increases.
3. Concentration. Concentration in the product will have a significant impact on viscosity.
4. Atmospheric pressure. Low pressures (600 mmHg) may bring important reductions in the infusion speed.
5. Back pressure. If infusion devices are calibrated in a particular position a change in that position modifies accuracy.
6. Storage. It is important to temper the infusion device before use, to avoid variations in the viscosity of the fluid and in the texture of the elastomer membrane, etc.
7. Risk of precipitation 5-FU. Risk of precipitation has to be minimized to avoid the capillary collapse. It is important to pre-filter with a 0.45m filter before filling.

APPENDIX 2- EXAMPLE OF PATIENT INFORMATION SHEET

PATIENT INFORMATION

You are receiving 5-fluorouracil (5-FU) through a infuser as part of your chemotherapy treatment. As the internal balloon deflates, the drug will enter your body.

START OF INFUSION

At the end of the session in the day hospital, a nurse will connect the infuser to its reservoir. The nurse will ensure that the clamp that can be used to stop infusion if necessary is open and the drug is flowing correctly through the infusion line. The pump will work in any position as long as the clamp is open.

FINDING THE INFUSER

Once the nurse confirms that the infuser is properly connected, you can be discharged from the day hospital. The infuser’s balloon will become deflated and will infuse the drug into your body for approximately 2 days.

If you perform everyday activities (walking, driving, etc.) while wearing the connected infuser but avoid extreme activities until the infusion has finished.

Other variables affecting the accuracy of the infusion are:

1. Temperature. It modifies the viscosity of the mix. It is estimated that a change in one degree in temperature brings variations in the flow speed of 2-3 %.

2. Viscosity. Viscosity has an inverse effect over flow, and speed decreases when viscosity increases.

3. Concentration. Concentration in the product will have a significant impact on viscosity.

4. Atmospheric pressure. Low pressures (600 mmHg) may bring important reductions in the infusion speed.

5. Back pressure. If infusion devices are calibrated in a particular position a change in that position modifies accuracy.

6. Storage. It is important to temper the infusion device before use, to avoid variations in the viscosity of the fluid and in the texture of the elastomer membrane, etc.

7. Risk of precipitation 5-FU. Risk of precipitation has to be minimized to avoid the capillary collapse. It is important to pre-filter with a 0.45m filter before filling.

CONCLUSION

There is a wide variation in the conditions of use of the elastomeric infusion devices, and in its calibration. Some factors related with the use of the device affect the flow of the medication, and may also affect the safety of the patient and the effectiveness of the treatment.

Implantation of an informative and educational datasheet for the patient would improve the use of the elastomeric infusion device.