

RADIOPHARMACEUTICAL SINGLE-VIAL COLD KIT FORMULATION OF FAPI-04, AN EXPERIMENTAL VECTOR FOR GALLIUM-68 PET IMAGING IN ONCOLOGY

Fiona GARNIER¹, Juliette FOUILLET¹, Charlotte DONZÉ¹, Léa RUBIRA¹, Cyril FERSING^{1,2}

1 : Radiopharmacy unit, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier (UM), 208 avenue des Apothicaires, 34298, Montpellier, France. 2 : Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier.

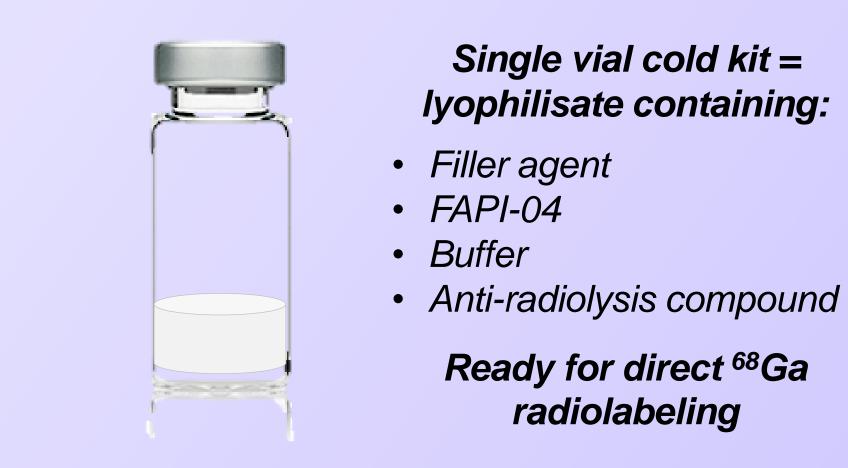
WHAT WAS DONE

- FAPI-04 radiolabeled with gallium-68 is a promising quinoline-based, DOTA-conjugated molecule for tumor microenvironment PET imaging.¹
- To date, [⁶⁸Ga]Ga-FAPI-04 is considered an experimental radiopharmaceutical, with a tedious and intricate radiolabeling process.²
- The formulation of FAPI-04 in a single-vial cold kit (SVCK)³ was therefore studied.

 The development of a SVCK formulation of FAPI-04 would simplify the preparation of [⁶⁸Ga]Ga-FAPI-04.

How it was done

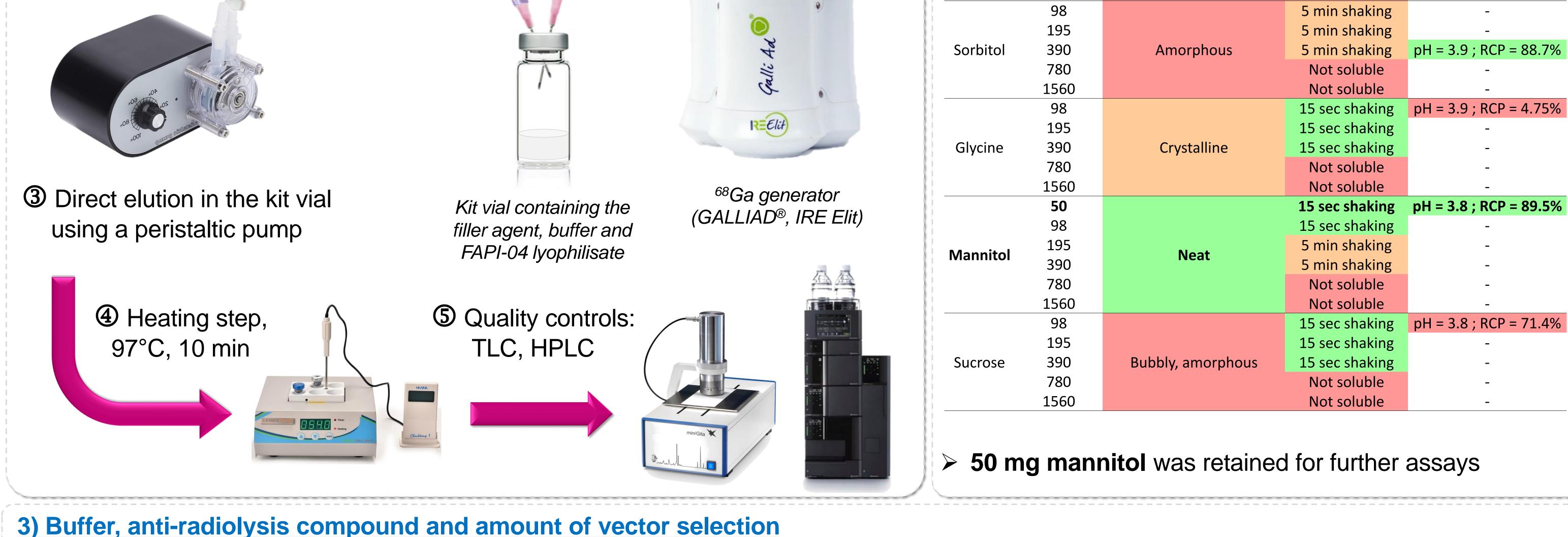
WHY IT WAS DONE


- Various parameters (type and amount) involved in the formulation of FAPI-04 as a SVCK were investigated: filler (bulk agent), buffer, anti-radiolysis compound, FAPI-04 quantity.
- Optimal conditions for successful radiolabeling of [68Ga]Ga-FAPI-04 were identified.

WHAT WAS ACHIEVED

1) Design of the radiolabeling protocol

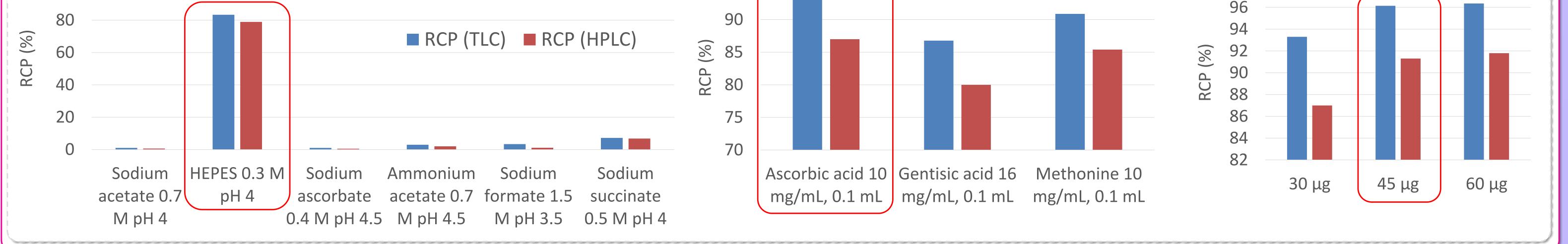
① Reconstitution of the lyophilisate with 3.9 mL water for injection (WFI)


② Preparation of the [⁶⁸Ga]GaCl₃ eluate (1.1 mL)

2) Filler selection

- 5 fillers commonly used were tested
- Each vial also contained 280 mg HEPES buffer and 30 µg FAPI-04 for test ⁶⁸Ga radiolabeling

Filler	Amount of filler (mg)	Appearance after freeze-drying	Reconstitution (3.9 mL WFI)	Test radiolabeling (RCP measured by TLC)
Trehalose	98	Oily, amorphous	5 min shaking	-
	195		5 min shaking	-
	390		5 min shaking	pH = 3.9 ; RCP = 93.2%
	780		Not soluble	-
	1560	Amorphous	Not soluble	-


Buffer	
--------	--

Anti-radiolysis compound

Amount of FAPI-04

98

100

95

WHAT IS NEXT

- After careful selection of the ingredients involved in the SVCK formulation of FAPI-04, optimal conditions involved 50 mg mannitol, 280 mg
 HEPES buffer, 2.6 mg ascorbic acid and 45 μg vector
 PRC >96% in TLC, >91% in HPLC.

[1] T. Lindner *et al.*, Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. *J Nucl Med* 2018, *59*, 1415–1422. [2] C. Da Pieve *et al.*, New fully automated preparation of high apparent molar activity ⁶⁸Ga-FAPI-46 on a Trasis AiO platform. *Molecules* 2022, *27*, 675. [3] N. Lepareur. Cold Kit Labeling: The Future of ⁶⁸Ga Radiopharmaceuticals? Front Med 2022, *9*, 812050. [4] European Directorate for the Quality of Medicines & Healthcare (EDQM), 2022. Gallium (⁶⁸Ga) edotreotide injection. *European Pharmacopoeia* 11.0, 2482, 1274–1276.