

# pH-measurement: Not as simple as we think? A case of sodium perchlorate injections

#### R.H. Svendsen<sup>1</sup>, <u>V. Michalsen<sup>1</sup></u>, T.S. Dogbeten<sup>1</sup>, V. Savic<sup>1</sup>. <sup>1</sup>Hospital Pharmacy Oslo Rikshospitalet, Hospital Pharmacies Enterprise, South Eastern Norway, Oslo, Norway vilpet@sahf.no

## BACKGROUND

- Ampoules with sodium perchlorate 100 mg/ml for injection are manufactured at the Hospital Pharmacy.
- pH measurements during quality control were between batches, resulting in out of trend/specification results and greater variation between in-process and release values.
- No data explaining these variations could be found in the literature.

#### AIM AND OBJECTIVE

Determine factors which could cause unstable pH measurements of sodium perchlorate solutions.

Determine if changing the pH electrode could solve the problem.

### MATERIALS AND METHODS

- pH-meter: Mettler Toledo SevenExcellence S400-Bio
- pH-electrodes: (A) InLab Routine Pro-ISM (Reference electrolyte: potassium chloride (KCI) 3M); (B) InLab Science Pro-ISM (Reference electrolyte: KCI 3M); (C) InLab Expert Pro-ISM (Reference electrolyte: XEROLYT®-polymer).
- pH was measured over time in different types of vials (glass/plastic) with extended exposure of solution to air.
- pH was measured uninterrupted at regular intervals for 420 seconds (n=3).
- Raman spectra of the precipitates were acquired by using a WITec Alpha300 Apyron Confocal Raman Microscope.

#### RESULTS

Different type of vials as well as extended air exposure of solution did not result in significant change of pH values. Initial testing with electrode A resulted in a characteristic trend where the pH increased, stabilized, and then decreased, while electrode C remained stable. For electrode B the same trend was observed as for electrode A, but testing was aborted due to visible precipitation in the sample. Results from subsequent comparison is shown in Table 1.

| Table 1. Com | parison between | electrode A and C | (mean±SD, n=3) |
|--------------|-----------------|-------------------|----------------|
|--------------|-----------------|-------------------|----------------|

| pH<br>measurement | 60 seconds | 240 seconds | 420 seconds |
|-------------------|------------|-------------|-------------|
| Elecotrde A       | 5.22±0.39  | 5.30±0.40   | 5.09±0.02   |
| Electrode B       | 5.70±0.07  | 5.73±0.08   | 5.75±0.08   |

The precipitates (Figure 1) were identified as Potassium perchlorate by Raman spectroscopy (Figure 2).





#### Figure 1. Microscopic image of the precipitate

Figure 2. Raman spectra of the dried precipitate compared to database spectra of potassium perchlorate.

#### CONCLUSION

The unreliable results could be attributed to an interaction between Sodium perchlorate and KCI reference electrolyte. This also created a precipitation, more clearly visible in electrode B due to higher flow of reference electrolyte to the sample than electrode A. Electrode C with polymer electrolyte was the most stable, without the characteristic decrease in pH after the initial stabilization, and no precipitation.

The Hospital Pharmacies Enterprise
South Eastern Norway Regional Health Authority

