

RADIOCHEMICAL PURITY DETERMINATION OF 177Lu-PSMA-617: DEVELOPMENT AND VALIDATION OF A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ANALYTICAL METHOD

Audrey SALLÉ¹, Juliette FOUILLET¹, Charlotte DONZÉ¹, Léa RUBIRA¹, Cyril FERSING^{1,2}

1: Radiopharmacy unit, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier (UM), 208 avenue des Apothicaires, 34298, Montpellier, France. 2: Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier.

WHAT WAS DONE

- [¹⁷⁷Lu]Lu-PSMA-617 = treatment of progressive, metastatic, castration-resistant prostate cancers expressing PSMA receptors, previously treated with taxane and at least one second-generation hormone therapy.
- [¹⁷⁷Lu]Lu-PSMA-617 = radiopharmaceutical drug with a marketing authorization, manufactured industrially (PLUVICTO[®], Novartis).¹
- It can also be prepared in-house (preclinical applications) \Rightarrow Quality control procedures required to determine radiochemical purity (RCP).^{2,3}

WHY IT WAS DONE

A radio-high-performance liquid chromatography (HPLC) method was developed and validated to assess RCP of [¹⁷⁷Lu]Lu-PSMA-617.

HOW IT WAS DONE

Materials

- Intel i5 computer with GINA 10.x software
- Infinity II 1260 (Shimadzu) automatic chromatograph with multi-wavelength UV detector
- GABI Nova radiodetector, mid-energy probe
- $C_{18} ACE^{\mathbb{R}}$ EquivalenceTM column (3 x 150 mm, 3 μ m)

HPLC analysis

Mobile phase: water + 0.1% TFA/acetonitrile + 0.1% TFA gradient Acquisition parameters:

- Flow = 0.6 mL/min
- Injection volume = $20 \mu L$
- Energy detection range = 0 1100 keV
- Column oven temperature = $30 \degree C$
- Analysis time = 26 min

WHAT WAS ACHIEVED

Three commercial [¹⁷⁷Lu]Lu-PSMA-617 batches were used as samples. Parameters considered for method validation were linearity, accuracy, precision, specificity, robustness, limits of detection (LOD) and limits of quantification (LOQ).

Radiochemical identity

 Each [¹⁷⁷Lu]Lu-PSMA-617 commercial batch was measured 10 times and retention times (t_r) were compared.

Accuracy

• Measurement in triplicate of 4 samples contaminated with a known proportion of radio-impurity ([¹⁷⁷Lu]Lu-DOTATATE).

Specificity

 Forced degradation conditions in the presence of acid, base, oxidative stress or heating

			1
Batch	1	2	3
t _r (min)	10.07 ± 0.01	10.07	10.13 ± 0.01
%CV	0.11	0	0.005

⇒ Radiochemical identity confirmed

Linearity

 8 range points were measured in sextuplicate and decay-corrected: 300; 150; 75; 37.5; 18.8; 9.4; 4.7 and 2.4 MBq/mL.

%Lu-PSMA	Observed RCP (%)	Theoretic RCP (%)	%CV
100	93.51 ± 0.16	-	100
90	88.85 ± 0.17	87.48	101.57
80	85.64 ± 0.15	82.61	103.67
70	81.74 ± 0.07	78.16	104.59
60	78.93 ± 0.93	74.80	105.52

⇒ Accuracy confirmed for an amount of impurity $\leq 30\%$ of total radioactivity.

Repeatability (part of precision)

RCP (%)	%CV	t _r (min)	%CV
93.5 ± 0.1	0.11	10.07 ± 0.01	0.12

55,0 cps *1000	
55,0	

- \rightarrow In situ formation of impurities
- \rightarrow Resolution (Rs) with the [¹⁷⁷Lu]Lu-PSMA-617 peak must be >2

Conditions	Mean w _{0.5} (min)	Mean Rs
NaOH 0.1 M	0.09	2.65
HCI 0.1 M	0.083	5.94
H ₂ O ₂ 3%	0.087	5.24
Heating 60°C	0.083	2.63

⇒ Specificity confirmed

- Conditions 1: flow rate = 0.8 mL/min instead

WHAT IS NEXT

A radio-HPLC method for the quality control of [177Lu]Lu-PSMA-617 was validated and can be used for in-house preparations for preclinical purposes of this radioactive drug.⁴

[1] O. Sartor, et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091-1103. [2] P. Orhon, et al. Improved International Validation of Analytical Methods for Radiochemical Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷⁷Lu-PSMA-1. Pharmaceuticals 2022, 15, 522. [3] M. Kraihammer, et al. Improved International Purity of ¹⁷ quality control of [177Lu]Lu-PSMA I&T. EJNMMI radiopharm. chem. 2023, 8, 7. [4] E. A. M. Ruigrok, et al. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur J Nucl Med Mol Imaging 2021, 48, 1339–1350.