With increased pressure on clinical pharmacy services there is a demand for reliable screening tools to appropriately allocate pharmaceutical care to those patients with most urgent and or complex needs. Several such tools have been developed; however, they are often locally developed with a lack of agreement on their components. To date, no broad agreement exists on the valid components of pharmaceutical care complexity screening tool in the adult hospital setting.

Methodology

A multistage development process:
- An online survey was distributed to chief pharmacists of all UK acute hospital trusts to identify existing prioritisation and/or complexity tools and processes (Figure 1).
- Respondents from hospitals that reported using a tool were invited to participate in a semi-structured interview to discuss the development and application of their tool. They were also asked to share copies of relevant documentation.
- A systematic review was carried out to identify existing patient prioritisation tools in hospital settings worldwide.
- Two Delphi studies were used to gain consensus as to the content and use of a pharmaceutical care complexity tool.

Results

Delphi One

- 300 tool components extracted from interviews, documents and a systematic review
- 109 final tool components included Clinical condition related (n=44), Medicines related (n=6)
- First Delphi round 49 international experts in medication safety invited
- 41 panel experts completed 1st round
- Second Delphi round 33 panel experts completed 2nd round
- 92 items reached the limit of agreement for importance after 2 rounds. Final list of the tool components (n=32)
- Grouped into three types (demographic, clinical and medication components) and shortened to 33 items which were included in the first draft of the Adult Complexity Tool for Pharmaceutical Care (ACTPC).

Delphi Two

- Data from interviews with 36 clinical pharmacy managers analysed. A further 28 statements on practicalities and clinical appropriateness were developed
- First Delphi round 56 national experts (chief pharmacists and clinical service pharmacy managers) invited
- 43 panel experts completed 1st round
- Second Delphi round 40 panel experts completed 2nd round
- Final statements reached the limit of agreement in relation to practicality or clinical appropriateness of the ACTPC after 2 rounds (n=18)
- Grouped into three types (highly, moderately and least complex) and shortened to 3 statements which were then included in the latest version of the ACTPC

Figure 1: Flow diagram of the development of components of a pharmaceutical care complexity screening tool

Final results from Delphi One & Delphi Two led to development of two tools:
- One tool (ACTPC-I) screens patients on acute admission to identify high risk/ highly complex patients.
- A second tool (ACTPC-II) classifies patients into different complexity levels (red, amber, green) requiring different level of pharmaceutical care during hospital stay.

Conclusion(s)

- This study has developed a comprehensive pharmaceutical care complexity screening tool containing 33 agreed components based on robustly collected data with input from national and international experts.
- Future work will test the feasibility of the ACTPC in clinical practice across three hospitals in the UK prior to a large cluster randomised controlled trial.
- It is hoped that the ACTPC can improve patient safety and assist in workforce planning and resource utilisation by ensuring that the right pharmacists see the right patients at the right time.

References

Acknowledgements

- This study is part of a PhD program at the University of Manchester funded by the Ministry of Higher Education (Kingdom of Saudi Arabia).
- This poster presents independent research funded by the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG-1215-20031). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Figure 2: Overview of Delphi One: gaining consensus on tool components