SUSTAINING A PHARMACEUTICAL DECISION SUPPORT SYSTEM WITH THE SYSTEMIC CLINICAL RISK OF DRUG-RELATED PROBLEMS

J Bouet1, A Potier1,5, C Mongaret2, B Michel3, M Cillis4, A Dony5, M Ade1, E Divoux5, C Vialaud1, E Dufay5
Pharmacists in: 1CHRU Nancy, FRANCE 2CHU Reims, FRANCE 3HUStrasbourg, FRANCE 4CHU UCL NAMUR, BELGIUM, 5CH Lunéville, FRANCE

Background
Pharmaceutical decision support system is a positive triangulation. PDSS matches with a reasoning software the patients’ data and modelled situations standing for drug-related problems. To aid to decision making, the modelled situations have to be linked to a systemic well-defined risk. As consequences the pharmaceutical intervention’s impact is documented and the systems’s interest sustained in patients’ safety.

Methods
Expert panel of 22 professionals
- 5 Physicians
- 17 Pharmacists

E-Delphi
- 2 rounds
- Consensus’s degree about likehood and severity: proportion in the same category as the median (Likert scale)
- Consensus obtained if ≥ 75%
- Risk level determination: likehood*severity

Created design of the risk’s values applied to 52 modelled patients’ situations

Results
- 8 risk’s levels with partial consensus
- 40 risk’s level with total consensus
- 4 with no risk’s level identified

Modelled situation completed by clinical risk’s level
- Low body-weight heparin and severe/terminal renal insufficiency

Drug-related problem
Contraindication
Clinical consequence
Hemorrhage
Systemic clinical risk’s level
Extreme

Systemic clinical risk determined by consensus for 48 situations

Objective
To sustain the interest of the PDSS in giving a systemic clinical risk’s level to 52 modelled situations standing for DRP

Conclusion
The symbolic artificial intelligence uses tools as the PDSS. They will be much more shared if algorithms include the systemic clinical risk.