BACKGROUND

The emergence of information and communication technologies has enabled the development of telepharmacy programmes (TPP) as a complementary tool to personal care, through which pharmaceutical care can be provided without the need to visit the hospital.

OBJECTIVES

Describe the pharmaceutical interventions (Pis) of patients included in a TPP.

MATERIAL AND METHOD

Prospective, descriptive study, from December 2019 to September 2022. Pharmacotherapeutic follow-up consisted of scheduled and structured telephone interviews with a maximum period of 3 months and sending hospital medication to the primary care health centre. **Inclusion criteria:** duration of treatment ≥3 months, stable chronic disease, adherence ≥90%, good tolerance to medication and/or mobility or dependency problems.

<table>
<thead>
<tr>
<th>Pis classified</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Drug-drug interactions (DDI)</td>
<td>-Temporary/permanent discontinuation</td>
</tr>
<tr>
<td>-Adverse drug reactions (ADR)</td>
<td>-Change of treatment</td>
</tr>
<tr>
<td>-Lack of efficacy (LOF)</td>
<td>-Change of dosing regimen</td>
</tr>
<tr>
<td>-Lack of clinical follow-up (LOCFU) > 1 year</td>
<td>-Continuation of treatment</td>
</tr>
</tbody>
</table>

RESULTS

TREATMENTS

- Biologics 57%
- Antiretrovirals 27%
- Multiple sclerosis/amyotrophic lateral sclerosis 6%
- Lipid-lowering drugs 3%
- Somatropins 3%
- Pulmonary antihypertensives 2%
- Others drugs 2%

410 patients

58% accepted by prescribing physician

4,497 telephone interviews

88 Pharmaceutical Interventions

TREATMENTS

- Biologics 57%
- Antiretrovirals 27%
- Multiple sclerosis/amyotrophic lateral sclerosis 6%
- Lipid-lowering drugs 3%
- Somatropins 3%
- Pulmonary antihypertensives 2%
- Others drugs 2%

<table>
<thead>
<tr>
<th>N</th>
<th>ADR (27) (30,7%)</th>
<th>CM (27) (30,7%)</th>
<th>LOF (19) (21,6%)</th>
<th>DDI (15) (17%)</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary/permanent discontinuation</td>
<td>6 (22,2%)</td>
<td>6 (22,2%)</td>
<td>2 (10,5%)</td>
<td>0</td>
<td>14 (15,9%)</td>
</tr>
<tr>
<td>Change of treatment</td>
<td>7 (25,9%)</td>
<td>1 (3,7%)</td>
<td>9 (47,4%)</td>
<td>1 (6,7%)</td>
<td>18 (20,5%)</td>
</tr>
<tr>
<td>Change of dosing regimen</td>
<td>2 (7,4%)</td>
<td>1 (3,7%)</td>
<td>2 (10,5%)</td>
<td>14 (93,3%)</td>
<td>19 (21,6%)</td>
</tr>
<tr>
<td>Continuation of treatment</td>
<td>12 (44,4%)</td>
<td>19 (70,4%)</td>
<td>6 (31,6%)</td>
<td>0</td>
<td>37 (42%)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

- Pharmacotherapeutic monitoring of patients included in the TPP mainly allowed for the detection of ADRs and ensured adequate clinical supervision of in-patient medication.
- The outcome of the interventions was mostly COT followed by modification of the prescribed regimen.
- The pharmacist’s activity in a TPP can contribute to a better use of medicines, as well as to prevent and solve medication-related problems.