COMPARISON OF TWO PHARMACOKINETIC/PHARMACODYNAMIC INDICES IN CRITICALLY ILL PATIENTS TREATED WITH AMIKACIN

F. CAJADE-PASCUAL¹, I. BELTRÁ-PICÓ², S. RUIZ-EL JERCHE², A. VIUDEZ-MARTÍNEZ², A. BOLEA-LACUEVA², R. NALDA-MOLINA³, A. RAMÓN-LÓPEZ³, P. SERRANO-MÁS²

4CPS-209

¹Hospital Pharmacy Department. University Clinical Hospital of Santiago de Compostela. Spain ²Hospital Pharmacy Department. University Clinical Hospital of Alicante. Spain ³Miguel Hernández University. Faculty of Pharmacy. Elche. Spain

SERVIZO GALEGO de SALIDE

*francajade13@gmail.com

BACKGROUND AND IMPORTANCE

J01- ANTIBACTERIALS FOR SYSTEMIC USE

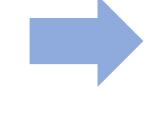
Amikacin is commonly used as an empirical treatment for Gram-negative infections in intensive care unit (ICU) patients.

The pharmacokinetic/pharmacodynamic (PK/PD) index commonly used is the ratio maximal concentration:minimum inhibitory concentration (Cmax/MIC) and, to a lesser extent, the ratio area under the curve from 0 to 24h:MIC (AUC₀₋₂₄/MIC)

AIM AND OBJECTIVES

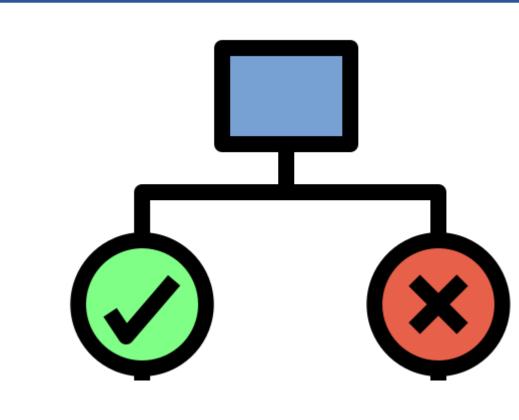
To evaluate the PK/PD indices Cmax/MIC and AUC_{0-24}/CMI for amikacin in critically ill patients.

MATERIAL AND METHODS


Patients admitted to a **medical ICU** with **preserved renal function** (CKD-EPI>60 ml/min) treated with **empirical amikacin once-daily** were included

Therapeutic Drug Monitoring was carried out after the first dose (Cmax and Cpost-8h, at 30 minutes and 8 hours respectively, after a 30-minute infusion)

Bayesian estimates were performed using **PKS**[®] **software** with a single compartment pharmacokinetic model



Patients were classified according to those who reached the target or not for both indices (Cmax/MIC and AUC_{0-24}/MIC)

Targets for PK/PD Cmax/MIC and AUC_{0-24} /MIC were 8-10 and 80, respectively. An empirical MIC of 4 mg/L was established for the calculation

Parametric AUC calculation was performed by empirical Bayesian estimation of pharmacokinetic

RESULTS

N=48

Results expressed as median and percentile 25-75

Age	63 years
Weight	83 kg
Creatinine	0.6 mg/dL

Cmax (mg/L)	48.3 (45.9-50.9)
Cmin (mg/L)	0.19 (0.03-0.61)
AUC (mg·h/L)	235 (191-271)
Cmax/MIC	12.1 (11.5-12.7)
AUC ₀₋₂₄ /MIC	58.7 (47.7-67.9)

	Starting	After TDM	
Total dose (mg)	1225 (1000-1500)	1250 (1200-1500)	
Dose adjusted for total weight (mg/kg)	14.7 (11.8-18.3)	14.7 (12.5-17.1)	p=0.33
Dose adjusted for ideal weight (mg/kg)	19 (15.3-22.8)	19 (17.6-22.2)	

100% of patients reached the therapeutic objective according to the **Cmax/MIC index**, although the percentage was **reduced to 17%** when the PK/PD index of efficacy was **AUC₀₋₂₄/MIC ratio** (p≤0.05)

To achieve the AUC₀₋₂₄/MIC target, the required dose was estimated to be 1760 mg (1300-2270) (p ≤ 0.05)

CONCLUSION AND RELEVANCE

No correlation between the PK/PD Cmax/CMI and AUC_{0-24} /MIC indices was observed. To achieve the AUC_{0-24} /MIC target, a significant dose increase is necessary compared to the doses required for Cmax/MIC.

