UTILITY OF THE THERAPEUTIC COMPLEXITY INDEX ADAPTED TO CRITICALLY ILL PATIENTS AS A METHOD OF STRATIFICATION FOR PHARMACEUTICAL CARE 5PSQ-005

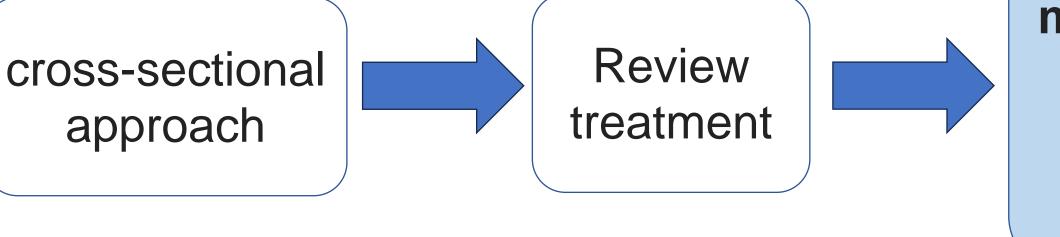
<u>L. Doménech</u>¹, M.B Guembe Zabaleta¹,M.R Gomez Domingo¹, J.M Guig Segura², P. Lalueza Broto¹, M.Q Gorgas Torner¹.

¹Vall d'Hebron University Hospital, Pharmacy Department, Barcelona, Spain. ²consortium Of Health And Social Care Of Catalonia, Pharmacy Department, Barcelona, Spain.

BACKGROUND AND IMPORTANCE

Intensive Care Unit workload pharmacyst providing ICU clinical services has not been optimized.

Aim and objectives

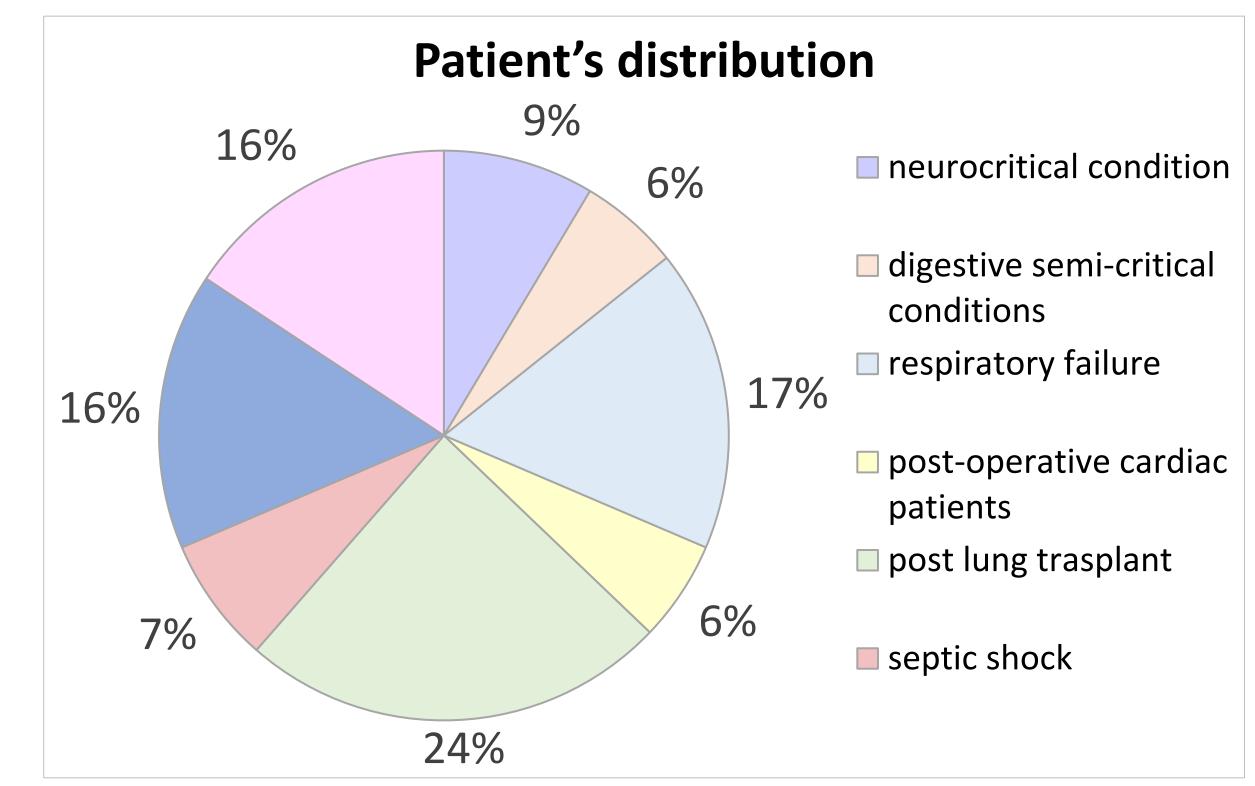


To measure the complexity of medication regimens in adult ICU and analyze the utility of this indicator as a method for patient stratification in pharmaceutical care for critically ill patients.

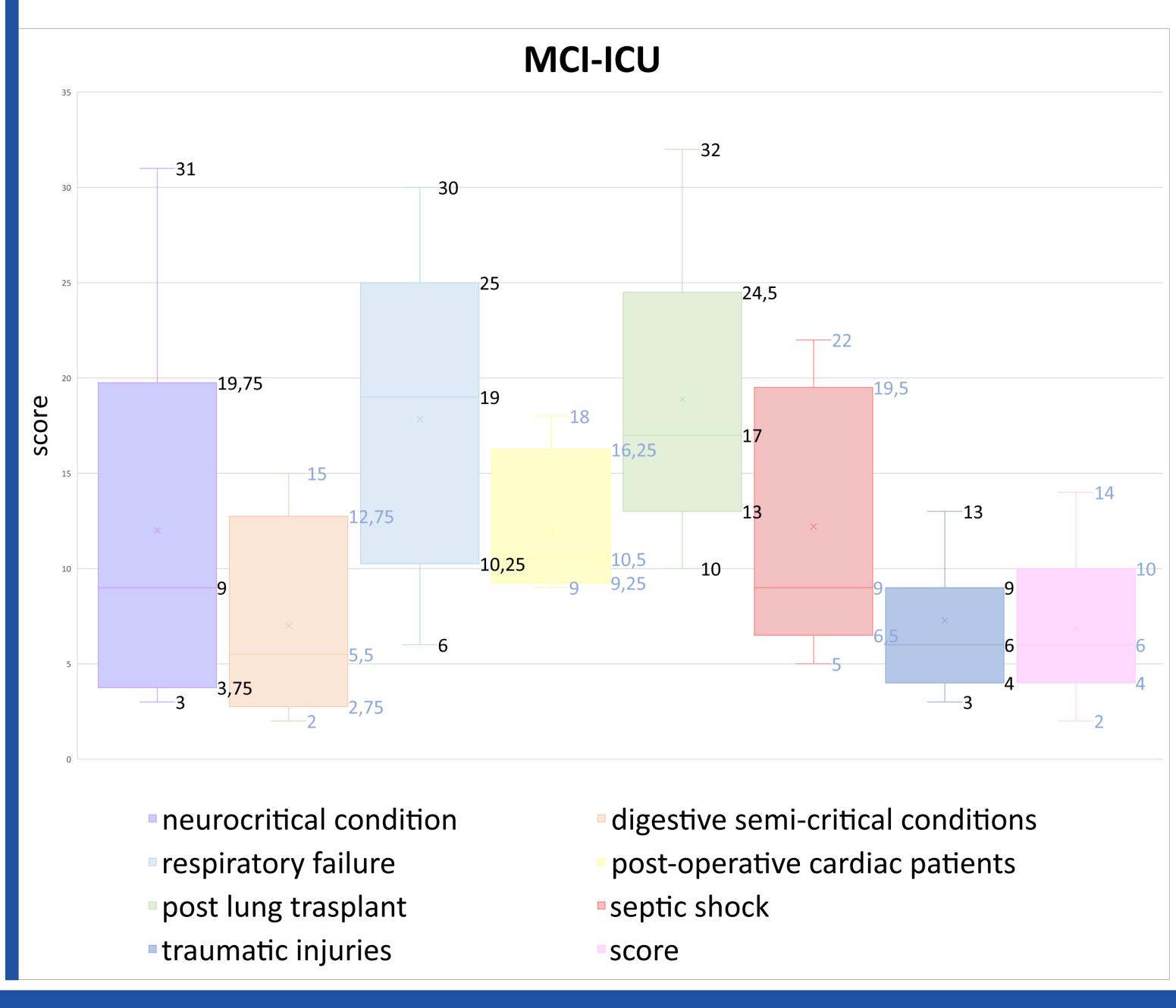
MATERIAL AND METHODS

Observational, descriptive, prospective study conducted at a third-level hospital.

 MBC ICII


measure the MRC-ICU
(Medication Regimen
Complexity Intensive
Care Unit Index)

- Demographic variables and 23 items related to each patient's treatment and clinical conditions were collected, then these items were scored as defined in table 2 of Am J Health Syst Pharm. 2019;76(Supplement 2):S34-S40.
- The MRC-ICU was calculated by summing the total score of the 23 items


Medications Assessed by the MRC-ICU Scoring Tool			
High-Priority Medications		ICU Medications	
Aminoglycosides	3р	Neuromuscular blockade	2p
Amphotericin B and liposomal	1p	Continuous infusions (excludes	1p
amphotericin B	ТР	those listed elsewhere)	ТР
Antiarrhythmics	1p	Total Parenteral Nutrition	
Anticoagulants	1p	Managed by nonpharmacist service	1p
Anticonvulsants	3р	Managed by specialist pharmacist	3р
Argatroban	2p	ICU Prophylaxis and FAST HUGS BID	
Azole antifungals	2p	Thromboembolic prophylaxis	1p
Blood products	2p	Stress ulcer prophylaxis	1p
Chemotherapy (active inpatient)	3р	Glycemic control	1p
Clozapine	3р	Bowel regimen	1p
Digoxin	3р	Chlorhexidine	1p
Ganciclovir/valganciclovir	1p	Analgesia and Sedation	
Hyperosmolar fluids (hypertonic sodium chloride mannitol)	1p	Opioids and sedatives	1p
Immunosuppressants (cyclosporine, sirolimus, tacrolimus)	3р	Continuous infusion opioids and sedatives	2 p
Lidocaine (continuous infusion)	2p	Antimicrobial Agents	
Lithium	3р	Antimicrobials	1p
Prostacyclins	2p	Restricted antimicrobials	2p
Theophylline	3р	Devices	
Therapeutic heparins	2p	Dialysis	2p
Vancomycin (i.v.)	3р	ECMO	2p
warfarin	3р	Intra-aortic balloon pump	1p
		Left ventricular assist Device	1p
		Mechanical ventilation	2p

RESULTS

- 71 patients (70% bed occupancy; 65% male)
- mean age of 58 ± 16.6 years
- the mean length of stay was 22 ± 24 days, and the mean MRC-ICU was 13 ± 8

- The average number of prescribed medications per patient was 18 ± 7
- The drugs contributing most to complexity were antibiotics, continuous perfusion sedoanalgesia, and immunosuppressants.

CONCLUSIONS

- 1. In our study, patients admitted to the ICU due to Acute Respiratory Failure or following Lung Transplantation exhibited MRC-ICU.
- 2. These patients may be considered as candidates for prioritized pharmaceutical care.
- 3. To optimize resources It would be necessary to correlate the score with the interventions performed by the pharmacist upon admission to the unit and those accumulated until discharge

REFERENCES

1. Gwynn ME and col. Development and validation of a medication regimen complexity scoring tool for critically ill patients. Am J Health Syst Pharm. 2019;76(Supplement_2):S34-S40.

