European Journal of Hospital Pharmacy

offers a high-quality, peer-reviewed platform for the publication of practical and innovative research and aims to strengthen the profile and professional status of European hospital pharmacists

International Advisory Board Members

Mike Allwood (UK)
Jo-Anne Brien (Australia)
Damian Child (UK)
Moses S S Chow (USA)
Lona Chrístrup (Denmark)
George Dranitsaris (Canada)
Mirjana Gasperlin (Slovenia)
Robert Janknegt (Netherlands)
Lene Juell Kjeldsen (Denmark)
Mark Stuart (UK)
Helmut Viernstein (Austria)
Vesna Vrca-Bacic (Croatia)

Guidelines for Authors and Reviewers

Full instructions are available online at http://ejhp.bmj.com/fora. Articles must be submitted electronically http://mc.manuscriptcentral.com/ejhp. Authors are required to transfer copyright in their work to the European Association of Hospital Pharmacists http://group.bmj.com/products/journals/instructions-for-authors/licence-forms

Included in Science Citation Index.

Subscription Information

EJHP is published bimonthly (subscribers receive all supplements)

Institutional rates 2015

Print and online

Print: £536; €724; $1046 (small)
£670; €905; $1307 (medium)
£771; €1041; $1504 (large)

Online only

£482; €651; $940 (small)
£602; €813; $1174 (medium)
£693; €936; $1352 (large)

ISSN: 2047-9956 (print), 2047-9964 (online)

Personal rates 2015

Print (includes online access at no additional cost)
£188; €254; $367

Online only
£165; £223; $322

Contact Details

Editorial Office
EJHP Editorial Office,
BMJ House, Tavistock Square, London, WC1H 9JR, UK
T: +44 (0)20 7383 6622
E: info.ejhp@bmj.com

Permissions
http://journals.bmj.com/misc/permissions.dtl

Production Editor
Malcolm Smith
production.ejhp@bmj.com

Supplement Enquiries
T: +44 (0)20 7383 6795
E: journals@bmj.com

Subscriptions
T: +44 (0)20 7111 1105
E: support@bmj.com

Display Advertising Sales
Mark Moran (Sales Manager)
T: +44 (0)20 7383 6783
E: mmoran@bmj.com
http://group.bmj.com/group/advertising

Online Advertising Sales
Marc Clifford (Sales Manager)
T: +44 (0)20 7383 6161
E: mclifford@bmj.com
http://group.bmj.com/group/advertising

Display & Online Advertising Sales (USA)
Jim Cunningham
T: +1 201 767 4170
E: jcunningham@cunnasso.com

Author Reprints
Reprint Administrator
T: +44 (0)20 7383 6305
E: admin.reprints@bmj.com

Commercial Reprints (except USA & Canada)
Nadia Guney-Randall
T: +44 (0)20 8445 5825
M: +44 (0)7866 262344
E: ngurneyrandall@bmj.com

Commercial Reprints (USA & Canada)
Marsha Fogler
T: +1 800 482 1450 (toll free in the USA)
T: +1 856 489 4446 (outside the USA)
E: mfogler@medicalreprints.com
Contents

Abstracts from the EAHP 2015 Congress

A1 Clinical pharmacy
A70 Drug distribution
A75 Drug information and pharmacotherapy
A112 General management
A117 Production and preparation
A131 Pharmacokinetics and pharmacodynamics
A137 Patient safety and risk management
A187 Other hospital pharmacy topics
A202 International posters
A205 Author index

This abstract book has been produced by the BMJ Publishing Group from electronic files supplied by the authors. The abstracts have been formatted for consistency but not edited for content. Every effort has been made to reproduce faithfully the abstracts as submitted. However, no responsibility is assumed by the publishers or organisers for any injury and/or damage to persons or property as a matter of product liability, negligence or otherwise, or from any use or operation of any methods, products, instruments, or ideas contained in the material herein. We recommend independent verification of diagnoses and drug dosages.
POSTER AWARD NOMINEES

Presentations on Wednesday, 25 March, 14:00 to 15:30, Hall D

<table>
<thead>
<tr>
<th>Time</th>
<th>Poster number</th>
<th>Poster nominee oral presentations</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>PKP-001</td>
<td>Current vancomycin dosing recommendations for paediatric patients: a pharmacokinetic evaluation</td>
<td>N Rasouli</td>
</tr>
<tr>
<td>14:15</td>
<td>PP-002</td>
<td>Compatibility and stability of hyoscine N-butyl bromide and furosemide admixtures for use in palliative care</td>
<td>C Bosch-Ojeda</td>
</tr>
<tr>
<td>14:30</td>
<td>PS-042</td>
<td>Parenteral nutrition in premature infants: risk analysis after redesigning a production process</td>
<td>C Salazar</td>
</tr>
<tr>
<td>14:45</td>
<td>PS-046</td>
<td>Evaluation of a systematic tool to reduce inappropriate prescribing (STRIP) in adults with intellectual disability: a pilot study</td>
<td>R Zaal</td>
</tr>
<tr>
<td>15:00</td>
<td>CP-061</td>
<td>Long-term cost-effectiveness analysis of infliximab, etanercept and adalimumab in rheumatoid arthritis patients in real-life clinical practice</td>
<td>I Viguera-Guerra</td>
</tr>
<tr>
<td>15:15</td>
<td>DI-040</td>
<td>Long-term effect of an individualised medication plan with drug administration recommendations on the patients’ drug knowledge</td>
<td>AFJ Send</td>
</tr>
</tbody>
</table>

Presentations on Thursday, 26 March, 09:00 to 10:30, Hall D

<table>
<thead>
<tr>
<th>Time</th>
<th>Poster number</th>
<th>Poster nominee oral presentations</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>CP-136</td>
<td>Inappropriate prescribing in older patients: assessment of a screening tool based on the stopp and start criteria</td>
<td>A-L Sennesael</td>
</tr>
<tr>
<td>09:15</td>
<td>CP-143</td>
<td>Involvement of microbial flora in aetiology of surgical site infections</td>
<td>D Calina</td>
</tr>
<tr>
<td>09:30</td>
<td>PP-028</td>
<td>Long-term stability of diluted solutions of the monoclonal antibody infliximab</td>
<td>N Navas</td>
</tr>
<tr>
<td>09:45</td>
<td>PS-116</td>
<td>Exposure to anticholinergic and sedative drugs: relationship between drug burden index, anticholinergic risk scales and falls in elderly hospitalised patients</td>
<td>E Jean-Bart</td>
</tr>
</tbody>
</table>
GAZYVARO™ (obinutuzumab, GA101) The only antibody with proven superiority vs. MabThera® (rituximab) in first-line CLL

Demonstrated by a head-to-head comparison of GAZYVARO and MabThera, both in combination with chlorambucil, in adult patients with previously untreated chronic lymphocytic leukaemia (CLL) and with comorbidities making them unsuitable for full-dose fludarabine-based therapy, as per the GAZYVARO licence.

NEW treatment option for first-line CLL

ENGINEERED FOR SUPERIORITY EFFECTIVE IN THE REAL WORLD

- GAZYVARO is the first glycoengineered type II anti-CD20 monoclonal antibody for CLL, proven to be superior to MabThera
- In a typical CLL patient population (median age 73 with at least 1 comorbidity), GAZYVARO+chlorambucil:
 - Added almost 1 year median progression-free survival vs. MabThera+chlorambucil (26.7 months vs. 15.2 months; p<0.001) — CLL1 primary endpoint
 - Is the first antibody to demonstrate improved overall survival vs. chlorambucil monotherapy in CLL, showing a 59% reduction in the risk of death (p=0.002); 80% of chlorambucil monotherapy patients vs. 91% of GAZYVARO+chlorambucil patients alive at median 23.0 month follow-up (data not yet mature)
 - Offers a manageable tolerability profile

References:

Prescribing information can be found overleaf
Prescribing Information
Ganexa® (nicardipine hydrochloride) 100 mg concentrate for solution for infusion

Refer to Ganexa® SC for full prescribing information. Indications: Ganexa® is in combination with other medications for the treatment of adult patients with previously untreated chronic lung disease (COPD) and systemic hypertension. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Ganexa® SC is indicated for use in patients who are unable to achieve adequate blood pressure control with diuretics alone. Ganexa® SC is not recommended for use in patients with active hepatitis B disease. Patients with positive hepatitis B serology should consult their physician and be monitored and managed to prevent hepatitis B reactivation. Treatment of patients with hepatitis B disease should be considered in patients with active hepatitis B disease. Patients with positive hepatitis B serology should consult their physician and be monitored and managed to prevent hepatitis reactivation. Treatment of patients with active hepatitis B disease should be considered in patients with active hepatitis B disease. Patients with positive hepatitis B serology should consult their physician and be monitored and managed to prevent hepatitis reactivation.

Pharmacokinetics
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Warnings
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Precautions
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.

Contraindications
No studies have been conducted in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease. Ganexa® SC is not recommended for use in patients with liver or kidney disease.
Clinical pharmacy

IMPACT OF A PHARMACEUTICAL CARE PROGRAMME FOCUSED ON SOLID ORGAN TRANSPLANT PATIENTS

10.1136/ejhpharm-2015-000639.1

Background Patient and organ survival is dependent on the use of immunosuppressant drugs. The doses are reduced several months after the surgery to low maintenance phase levels. Treatment is complex and requires drug treatment monitoring.

Purpose To analyse the impact of a Pharmaceutical Care Programme focused on solid organ transplant patients for the prevention and correction of drug-related problems (DRPs). DRPs include medication errors in the process of prescribing, dispensing or administering a drug.

Material and methods Study design: retrospective observational study. Sample: 222 solid organ transplant patients: 94 kidney (9 with pancreas), 31 lung, 86 liver and 19 heart. The IASER method (identify, act, monitor, evaluate and results) was used as a tool to analyse and categorise the DRPs. Variables: number and type of DRP, drugs, recommended actions, acceptance and cost savings (acquisition drug cost, preparation and administration time cost, GRD cost, etc.).

Results 125 DRPs were detected in 88 patients (0.5 problem/solid organ transplant patient). 60.8% of the patients were males and the average age was 53 years (7–86). Identified by validation (71.2%) and analytical parameters (24.0%). 41.6% of DRPs reached the patient. The main problems were over dosage (24%) in kidney transplant and (8%) in liver transplant patients, the need for additional treatment (12%) in lung transplant and (1.6%) in heart transplant patients. The DRPs were categorised into safety (45.6%), indication (33.6%), effectiveness (18.4%) and adherence (2.4%). The therapeutic groups involved were mainly antibiotics (50%) and immunosuppressants (26%). 81.6% of the actions were accepted by physicians. 72% were relevant to improving patient care. The financial impact was €69,826/year saved (€38,123/year in kidney transplant, €19,106/year in lung transplant, €9,658/year in liver transplant and €2,939/year in heart transplant patients).

Conclusion Management of complex treatments requires the involvement of all health professionals. A pharmaceutical care programme based on pharmacotherapeutic monitoring resolved DRPs in solid organ transplant patients. It improved the quality of treatment and saved money.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

CLINICAL PHARMACIST INTERVENTIONS ON PARENTERAL NUTRITION APPROPRIATENESS IN A TEACHING HOSPITAL

G. Meers, K. Noerens*, H. Collier, P. Cortoos. UZ Brussel, Hospital Pharmacy, Brussels, Belgium

10.1136/ejhpharm-2015-000639.3

Background Total Parenteral Nutrition (TPN) isn’t always prescribed according to international guidelines: nutritional screening is frequently lacking, the prescribed therapy is not always adapted accordingly and subsequent monitoring is often absent. Our objective was to assess the potential benefit of a clinical pharmacist reviewing prescribed TPN.

Purpose Evaluation of the appropriateness of prescribed TPN.

Material and methods Setting: tertiary hospital of 1,000 beds. Design: observational prospective study. Population: 90 liver transplant patients during 2013. System: the physician requests the pharmacist consultation via the electronic medical record. The pharmacist delivers the documentation and training to the patient in collaboration with the medical and nursing team. At discharge, the pharmacist gives education about drugs by an informative newsletter and planning schedule. One week after discharge, he telephones the patient to complete a survey on the training level and satisfaction. Variables: patient characteristics, diagnosis, treatment, level of understanding and satisfaction.

Results During the study period, 63 patients met the criteria for inclusion in the system. 100% of the consultations were performed and recorded. (Median; range): 57 years (26–69); 80% male; stay: 14 days (8–60); number of diseases contributing to the patient’s condition: 2.5 (1–9); drugs at admission: 5.5 (0–14); drugs at discharge: 10 (5–10). The main reason for transplantation was viral hepatitis: HCV (58%), HBV (14%), alcoholic cirrhosis (30%) and hepatocellular carcinoma associated with previous cases (14%). 31 surveys were obtained with a level of understanding 4.8 out of 5. 90% of patients used the schedule delivered. 58% claimed to know what it was for each drug, 90% were not confused with taking the medicines and 97% did not forget to take their medicines. Finally, 97% said they were satisfied with the information received.

Conclusion The participation of a pharmacist in this system can contribute to a better understanding of the treatments by the transplant patient. Electronic consultation has proved a useful and efficient tool for coordinating activities among professionals involved.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
clinical pharmacist. During the intervention period feedback was provided to the physician and dietician in multidisciplinary collaboration. The ESPEN guidelines were taken as golden standard. All data were obtained from the electronic patients files.

Results We assessed 272 hospitalisations, 152 pre-interventional (10/2013–01/2014) and 120 post-interventional (02/2014–04/2014). During the latter period an intervention was needed in 83.7% (176 interventions) of the cases. Prevalence of nutritional screening increased from 25.0% to 61.7% (p < 0.001) as did energy requirement calculation (30.9% vs. 67.5%; p < 0.001). Therapy appropriateness increased from 58.8% to 75.8% (p < 0.05). The median duration (6.0 vs. 7.0 days) of the therapy was not significantly reduced (p = 0.36). We avoided the production of at least 81 TPNs on a total of 1172. During the 3 month intervention period an estimated total saving of 20756€ could be obtained.

Conclusion The additional monitoring of the appropriateness of TPN by a clinical pharmacist has a positive influence on therapy quality and healthcare costs.

REFERENCES AND/OR ACKNOWLEDGEMENTS
1. ESPEN guidelines (http://www.espen.org/education/espen-guidelines)
2. Nutrition support team

No conflict of interest.

AGE-RELATED MACULAR DEGENERATION: ECONOMIC IMPACT OF IMPLEMENTING TREATMENT GUIDELINES
1 Bласco-Mасcaro*, G Mercadal-Orfila, R Romero-Del Barco. Hospital Mateu Orfila, Pharmacy, Mahon, Spain

10.1136/ejhpharm-2015-000639.4

Introduction

Background Drugs for age-related neovascular macular degeneration (AMD) reverse the disease process, usually leading to gains in visual acuity. Ranibizumab (Lucentis) was licensed for AMD in the EU in 2007. Bevacizumab (Avastin), has been widely used globally off-label by splitting up doses licensed for cancer.

Purpose To assess the use and cost of intravitreal ranibizumab and bevacizumab, after the implementation of AMD treatment guidelines.

Methods A retrospective analysis of the use of both drugs in our hospital from 2007 to 2013 was conducted. At the end of 2009 AMD treatment guidelines were implemented in our hospital: ranibizumab 0.5 mg only can be prescribed after poor response to three monthly injections of bevacizumab 1.25 mg.

Results A total of 494 doses of ranibizumab were administered to 107 patients. Bevacizumab was administered to 418 patients with a total of 1325 doses.

Prescriptions for each drug were as follows (from 2007 to 2013):
- Ranibizumab: 23, 147, 179, 32, 27, 25, 61.
- Bevacizumab: 0, 56, 63, 204, 259, 340, 403.

In 2010 after the implementation of the protocol, ranibizumab prescriptions decreased 82.1%, from 179 (2009) to 32 (2010). Bevacizumab prescriptions increased 223.8%, from 63 (2009) to 204 (2010).

Ranibizumab injection average cost was €985.69 per injection. Each bevacizumab injection cost €16.40. Ranibizumab costs in the whole seven year period were €486,929. Bevacizumab costs in the same period were €21,730. Global saving costs for implementing this protocol in our hospital were €1,151,128.

Conclusions Our study showed that considerable savings may be obtained by promoting the most cost-effectiveness alternative as first line treatment for AMD. The role of hospital pharmacist was crucial, involving the process of splitting up bevacizumab doses.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.
REFERENCES AND/OR ACKNOWLEDGEMENTS

1 Psychiatric Department

No conflict of interest.

CP-006 PRACTICAL UTILITY OF ITPA GENOTIPATION IN A TERTIARY HOSPITAL

1 R López-Sepúlveda, CM Valencia Soto, C García-Collado, Pi Pérez-Morales, FJ Orantes, N Martínez-Casanova. 2. Resident, Granada, Spain; Hospital Universitario Virgen de las Nieves, Farmacia, Granada, Spain; 3Hospital Huercal Overa, Farmacia, Huercal Overa, Spain; 4Hospital Can Misses, Farmacia, Ibiza, Spain

10.1136/ehjpharm-2015-000639.6

Background Inosine triphosphatase (ITPA) genotyping is used for predicting anaemia in patients with genotype 1 chronic hepatitis C. The AA and CA genotypes have the lowest incidence of anaemia.

Purpose To compare the incidence of anaemia, the reduction of RBV dose and the use of darbepoetin in patients treated with boceprevir or telaprevir before and after the introduction of ITPA genotyping in a tertiary care hospital.

Material and methods Observational, pre-post intervention study using pharmacotherapeutic records of patients treated with telaprevir or boceprevir before and after the introduction of ITPA genotyping. Anaemia was defined as haemoglobin (Hb) <10.5 mg/dL. Baseline characteristics were age, sex, fibroscan, basal Hb, nadir Hb and ITPA genotype. Homogeneity of baseline characteristics was evaluated by the t-test. Comparisons of the incidence of anaemia, the reduction of RBV dose and the use of darbepoetin were made with the independent proportions test.

Results Before genotyping 37 patients were included (27 male, 10 female): Mean fibroscan was 22 kpa, mean basal Hb was 15.6 mg/dL and mean nadir Hb was 10.4 mg/dL. After genotyping 20 patients were included (16 male, 4 female): 18 patients were CC (90%) and two were AC (10%). Mean fibroscan was 11.9 kpa (significantly lower than before genotyping). Mean basal Hb was 16.1 mg/dL and mean nadir Hb was 10.9 mg/dL.

Comparison of before and after results. Reduction in RBV dose: 43.2% vs. 40% (p = n.s.); anaemia: 35.1% vs. 45% (p = n.s.); and treatment with darbepoetin: 32.4% vs. 25% (p = n.s.).

Conclusion Although the reduced use of darbepoetin suggests the practical utility of this resource, a higher percentage of patients experienced anaemia after ITPA genotyping was available. This is possibly because the RBV dose was reduced by less than before genotyping even though 90% of patients were the CC (pro-anaemia) genotype. Greater emphasis should be placed on this resource.

No conflict of interest.

CP-007 HEPATITIS C VIRUS TREATMENT-RELATED ANAEMIA AND ITS ASSOCIATION WITH HIGHER SUSTAINED VIROLOGIC RESPONSE RATE

1 R López-Sepúlveda, CM García-Collado, Pi Pérez-Morales, CM Valencia, FJ Orantes, N Martínez-Casanova. 1Hospital Universitario Virgen de las Nieves, Pharmacy, Granada, Spain; 2Hospital Huercal Overa, Farmacia, Huercal Overa, Spain; 3Hospital Universitario Virgen de las Nieves, Farmacia, Granada, Spain; 4Hospital Can Misses, Farmacia, Ibiza, Spain

10.1136/ehjpharm-2015-000639.7

Background Some authors have described that among Hepatitis C Virus (HCV) genotype 1-infected patients treated with dual therapy, anaemia has been associated with higher rates of Sustained Virological Response (SVR) as well as the use of erythropoiesis-stimulating agents.

Purpose To investigate the relationships between treatment outcomes, anaemia, and their management with ribavirin dose reduction and/or darbepoetin in patients treated with boceprevir (BOC) or telaprevir (TLV) in a tertiary hospital.

Material and methods Observational study. Data was collected from pharmacotherapeutic records of patients who initiated therapy with TLV or BOC between December’12 and May’13. Anaemia was defined as haemoglobin (Hb) <10.5 mg/dL. Darbepoetin was permitted for anaemic patients after ribavirin dose reduction. The variables were: age, sex, reduction of ribavirin dose and use of darbepoetin.

Results 36 patients were studied (26 men and 10 women). 23 (63.8%) patients were treated with TLV and 13 (36.2%) with BOC.

25 (69.5%) patients reached SVR (16 (69.5%) for TLV and 9 (69.2%) for BOC). 12 of these patients experienced anaemia (48%) (7 (43.8%) for TLV and 5 (55.6%) for BOC). The total number of patients who experienced anaemia was 17 (47.2%) (9 (39.1%) for TLV and 8 (61.5%) for BOC), 16 patients (44.4%) had a reduction in their ribavirin dose (8 (34.8%) for TLV and 8 (61.5%) for BOC) and 12 patients (33.3%) used darbepoetin (6 (26.1%) for TLV and 6 (46.1%) for BOC). 8 of these 12 (66.6%) patients showed SVR, 1 relapsed and 3 abandoned treatment due to adverse events (4 (66.6%) for TLV and 4 (66.6%) for BOC).

Conclusion

1. Among our genotype 1-infected patients treated with BOC or TLV anaemia was not associated with higher rates of SVR.

2. Patients with darbepoetin did not have higher rates of SVR.

3. Percentages of SVR were similar between TLV and BOC.

REFERENCES AND/OR ACKNOWLEDGEMENTS

No conflict of interest.

CP-008 A CLINICO-ETHICAL FRAMEWORK FOR MULTIDISCIPLINARY MEDICINES REVIEW IN NURSING HOMES: A HEALTH FOUNDATION SHINE PROJECT

1 D Campbell, W Baqi, S Barrett, N Desai, H Hughes, R Copeland, A Laverty, J Mackintosh. 1Northumbria Healthcare NHS Foundation Trust, Pharmacy, North Shields, UK; 2Newcastle University, Institute of Health and Society, North Shields, UK; 3Northumbria Healthcare NHS Foundation Trust, Patient Experience, North Shields, UK

10.1136/ehjpharm-2015-000639.8

Background Polypharmacy is common in care home residents. Inappropriate and potentially harmful prescribing in older people has been reported extensively in the literature. Residents in care homes often have little involvement in prescribing decisions involving them. Reviewing and stopping inappropriate medicines is not standard practice across the health economy.

Purpose To develop a method of optimising medicines whilst ensuring that all residents were involved in decisions.

Material and methods Pharmacists undertook a detailed medicines review using primary care records and presented to a multidisciplinary team (MDT) meeting with the care home nurse and general practitioner. The team considered:
To determine predictive factors of pain, fatigue and QoL at T3, a univariate followed by a multivariate ANOVA was used. The time until definitive deterioration was estimated using a Kaplan-Meier method.

Results 68 patients were included in the PI (n = 34) or UC groups (n = 34). Ninety-two percent of the patients returned all the questionnaires. At T3, pain and fatigue were lower in the PI group. Between T1 and T3, QoL remained stable. We identified a significant improvement of 5 points in QoL for patients in the PI group.

Conclusion Whatever the statistical model used, the pharmacist intervention at the beginning of chemotherapy had a less than significant impact on pain and fatigue but nevertheless it was confirmed to have had a significantly positive impact on QoL.

REFERENCES AND/OR ACKNOWLEDGEMENTS

The authors thank Philip Bastable.

No conflict of interest.

To see the full document please visit the EAHP Publications webpage:

1M Cantudo-Cuenca,1C Haro Márquez,2M Cantudo-Cuenca,1M González-Medina*,
1C Gómez-Peláez,1M Tristan-Pérez,2C Balbín,2M Morillo,2M Verdugó,2F Área,2F de
Gestión e Investigación de la Salud,3M Hospital Universitario San Juan de Dios, Sevilla, Spain;3Hospital San Juan de Dios, Farmacia, Sevilla, Spain;3Hospital Universitario San Cecilio, UGC Intercentros

REFERENCE S AND /OR ACKNOW L EDGEMENTS

No conflict of interest.