Evaluation of a frozen logistics circuit implementation

C. Danet¹, A. Leclère¹, M. Desplechain¹, M. Moulis¹, G. Vitale¹, N. Beaugrand¹
¹Logipharma - CHU de Toulouse, Pharmacy, Toulouse, France

BACKGROUND AND OBJECTIVES

- Hospital pharmacy in Toulouse (Logipharma) : Logistics platform, located remotely from healthcare services.
- 2 types of supply chains :
 - stock products (→)
 - off-stock products (not stored in the pharmacy) (←→)
- New hemostatic specialty Tisseel® (fibrin sealant) replaces Tissucol®. According to the SPC (Summary of Product Characteristics), Tisseel® must meet special storage conditions.

 - Tissucol®
 - Stored in the refrigerator (2 to 8°C).
 - Current supply chain : stock product
 - Current delivery : refrigerated (using usual coolers ensuring temperature between 2 and 8°C).
 - Tisseel®
 - Frozen ≤ -20°C
 - Without any possible temperature excursion
 - Needed Frozen delivery

 → Tisseel® supply chain : Stock or Off-stock product?
 → To determine the implementation modalities of a frozen logistics circuit from receipt to delivery of drugs to the healthcare service.
 → To estimate the needs and necessary costs for the establishment of such a circuit.

MATERIALS AND METHODS

- Retrospective analysis : from January 2015 to July 2015
- Evaluation of Storage and transportation needs
- Estimation of Tisseel® stock from Tissucol® data of three dosages (average stock)
 → Evaluate our storage volume in a freezer
- Assess the number and capacity of coolers necessary for delivery to healthcare services
 → Consumptions extraction from warehouse management system Copilote®
 → Determine the number of consumer services, and the average number of shipment

RESULTS

1st Hypothesis : stock

<table>
<thead>
<tr>
<th>TISSUCOL® KIT 5ML, 2ML,1ML</th>
<th>TISSEEL® 10ML, 4ML, 2ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum stock level</td>
<td>Maximum storage capacity</td>
</tr>
<tr>
<td>calculated on ADC</td>
<td>calculated on ADC</td>
</tr>
<tr>
<td>80</td>
<td>67 L</td>
</tr>
<tr>
<td>observed</td>
<td>81</td>
</tr>
<tr>
<td>ADC → Average daily Consumption</td>
<td>68 L</td>
</tr>
<tr>
<td>(1 Tisseel package = 0.836 L)</td>
<td></td>
</tr>
</tbody>
</table>

- Volume required for storage of 3 dosages of Tisseel® : estimated at 68 liters. (and 14 L for storage of 2 others frozen products, currently stored in a smaller freezer).
- Every week, about 17 coolers with a capacity of 3.5 liters will be needed to transport Tisseel® from the platform to consumer services.
- Total equipment requirements :
 - Freezer with a capacity of at least 82 L
 - 17 coolers
- Issue : Our current coolers and those offered by the laboratory do not guarantee a temperature below -20°C during our delivery time (3 hours maximum)
 → not suitable for our logistics circuit
- Evaluation of new coolers purchase : Coolers with eutectic plates guaranteeing transport at -20 °C for 3 hours.
 → represents an additional total cost of €4488

2nd Hypothesis : off-stock

- Laboratory will deliver Tisseel® in container with dry ice (Shelf life in the shipping box with dry ice = 72hours)
- Receipt and check of the quantities then delivery (in the shipping box) to the healthcare services
- Total equipment requirements :
 - 10 pairs of cryogenic gloves (used in the healthcare services to handle dry ice) → represents a €1979 total extra cost

CONCLUSIONS

Tisseel® cannot withstand temperature excursions, which represents a significant additional cost for our hospital, if it is stored in our pharmacy. To secure the circuit of frozen products, we have decided to focus on off-stock circuit that represents a smaller cost. Each service will place an order with the supplier. Then we will carry out the delivery of medicines, using the delivery box with dry ice of the laboratory.

dd-009