GOOD PRACTICE INITIATIVES

The European Association of Hospital Pharmacists (EAHP) is collecting examples of good practice initiatives (GPIs).

The overall purpose of collecting and sharing GPIs is:

- to inspire and encourage fellow hospital pharmacists in other countries to strive for the next high standard in practice;
- to identify how colleague hospital pharmacists were able to overcome barriers and obstacles in order to make improvement happen; and,
- to give recognition to those who have completed successful new initiatives in hospital pharmacy service.

SECTION 1: INTRODUCTORY STATEMENTS AND GOVERNANCE

OPTIMISATION OF CANCER CARE PATHWAY OF SCHEDULED PATIENTS WHEN OUTSOURCING CHEMO SUPPLY

Authors: Charlotte Chatain, Orane Gleizes, Séverine Barbault-Foucher, Sophie Barthier, André Rieutord, Niccolo Curatolo

What was done?
The production of chemotherapy of our hospital will be outsourced by September 2019. This is going to lead to new constraints including anticipated production before patients are admitted to the clinical ward.

Why was it done?
The production of chemotherapy of our hospital will be outsourced by September 2019. This is going to lead to new constraints including anticipated production before patients are admitted to the clinical ward.

How was it done?
The clinical pathway of scheduled patients was mapped to describe each step and validated by all the concerned health professionals. Data were collected between October and December 2017 to monitor the percentage of anticipated orders by physicians for chemotherapy production (also called “OK production”). Critical steps and/or bottlenecks were identified. Brainstorming workshops were set to identify areas of improvement with pharmacists, physicians, nurses and secretaries. Finally, the proposals made were implemented.

What has been achieved?
Two critical steps have been identified in this pathway: the receipt of the biological test results by the secretary and the “OK production” given by the physician. It has been decided for the secretary to call patients 72 hours (instead of 24 hours) before to remind them to do their biological test in the medical laboratory. An electronic and standardised prescription with the specific date for the biological test has also been created. In addition, a follow-up form was completed by pharmacists to secure all the critical steps and remind secretaries when they had to call patients and remind physicians when they had to give the “OK production”. Over a two months period, “OK production” given 24–48 hours before the admission increased from 18% to 40% (n= 15 patients).

What next?
These clinical pathway improvements allowed a better anticipation. The process-oriented approach used to identify solutions was very fruitful and led to collaborative solutions likely to be applied and accepted by both clinical ward and pharmacy. This method could be applied to improve other types of processes in our hospital.

Keywords | Oncology pharmacy, organisation of health services, organisational development.

Conflict of interest
I have no potential conflict of interest to disclose.

ANTIMICROBIAL STEWARDSHIP: WHAT IF EVERYTHING IS ON YOUR SCREEN?

Authors: Marinos Petrongonas, Maria Fragiadaki, Eleni Rinaki, Leonidas Tzimis

What was done?
Hospital pharmacists (HPs) designed and developed software tools to support the antibiotic stewardship team’s work. Particular developments were: a) A PC application (GrAD_calc), in Microsoft Excel, to calculate antimicrobial consumption, instead of ABC_calc tool. GrAD_calc takes advantage of the unique codes for each branded product and transforms aggregated data, provided by the Hospital Information System (HIS), into antibiotic consumption in DDDs/100 occupied bed-days. Results are presented in charts and figures, in a format that enables easy of comparative monitoring over time. b) Necessary indexes of the above calculator and documentation needed as justification for restricted antimicrobials dispensing have been integrated into the HIS; in result, data for national surveillance programme for antimicrobial consumption are automatically exported. Useful information for pre- and post-prescription review, like demographics, indication(s), co-morbidities, current and previous treatments, microbiology tests’ results, susceptibility reports, is available and easily accessible to prescribers, HPs, and infection disease specialists.

Why was it done?
Hospital pharmacists (HPs) designed and developed software tools to support the antibiotic stewardship team’s work. Particular developments were: a) A PC application (GrAD_calc), in Microsoft Excel, to calculate antimicrobial consumption, instead of ABC_calc tool. GrAD_calc takes advantage of the unique codes for each branded product and transforms aggregated data, provided by the Hospital Information System (HIS), into antibiotic consumption in DDDs/100 occupied bed-days. Results are presented in charts and figures, in a format that enables easy of comparative monitoring over time. b) Necessary indexes of the above calculator and documentation needed as justification for restricted antimicrobials dispensing have been integrated into the HIS; in result, data for national surveillance programme for antimicrobial consumption are automatically exported. Useful information for pre- and post-prescription review, like demographics, indication(s), co-morbidities, current and previous treatments, microbiology tests’ results, susceptibility reports, is available and easily accessible to prescribers, HPs, and infection disease specialists.

What was it done?
Hospital pharmacists (HPs) designed and developed software tools to support the antibiotic stewardship team’s work. Particular developments were: a) A PC application (GrAD_calc), in Microsoft Excel, to calculate antimicrobial consumption, instead of ABC_calc tool. GrAD_calc takes advantage of the unique codes for each branded product and transforms aggregated data, provided by the Hospital Information System (HIS), into antibiotic consumption in DDDs/100 occupied bed-days. Results are presented in charts and figures, in a format that enables easy of comparative monitoring over time. b) Necessary indexes of the above calculator and documentation needed as justification for restricted antimicrobials dispensing have been integrated into the HIS; in result, data for national surveillance programme for antimicrobial consumption are automatically exported. Useful information for pre- and post-prescription review, like demographics, indication(s), co-morbidities, current and previous treatments, microbiology tests’ results, susceptibility reports, is available and easily accessible to prescribers, HPs, and infection disease specialists.

What next?
Hospital pharmacists (HPs) designed and developed software tools to support the antibiotic stewardship team’s work. Particular developments were: a) A PC application (GrAD_calc), in Microsoft Excel, to calculate antimicrobial consumption, instead of ABC_calc tool. GrAD_calc takes advantage of the unique codes for each branded product and transforms aggregated data, provided by the Hospital Information System (HIS), into antibiotic consumption in DDDs/100 occupied bed-days. Results are presented in charts and figures, in a format that enables easy of comparative monitoring over time. b) Necessary indexes of the above calculator and documentation needed as justification for restricted antimicrobials dispensing have been integrated into the HIS; in result, data for national surveillance programme for antimicrobial consumption are automatically exported. Useful information for pre- and post-prescription review, like demographics, indication(s), co-morbidities, current and previous treatments, microbiology tests’ results, susceptibility reports, is available and easily accessible to prescribers, HPs, and infection disease specialists.

Why was it done?
Implementation of antimicrobial stewardship programmes in hospitals is part of the national strategy to promote prudent use of antimicrobials. As HPs chair stewardship teams, they are responsible for assessing prescription and monitoring antimicrobial use. Designing and developing automated informative tools facilitates HPs in their role.
GOOD PRACTICE INITIATIVES

How was it done?
HPs created GrAD_calc on their own resources, while changes in HIS were made by ICT service provider, following technical specifications described by HPs. A number of technical problems have been resolved with the contribution of HPs.

What has been achieved?
• Monitoring of antimicrobial use by pharmacy is quicker and effortless. • Handwritten documentation included in restricted antimicrobials’ prescriptions has been replaced by an electronic decision support system, as tool to improve antimicrobial prescribing and stewardship. • Useful information from patient’s medical record is directly available to HPs and physicians, and facilitates hospital’s policy for assessing antimicrobial prescriptions. • Data, like indication, medicine, dosage scheme, microbiology results and susceptibility reports, are recorded electronically and update patients’ pharmaceutical records, permitting further use for pharmaco-epidemiology studies.

What next?
Next challenge is wide use of tools developed, to optimise pharmaceutical services provided and dispense restricted antibiotics only when accordingly justified. GrAD_calc is applicable in hospital setting and HIS’s tool is incorporated and can be used by all regional hospitals.

Keywords | Antimicrobial stewardship, multidisciplinary team, technology implementation.
Conflict of interest | I have no potential conflict of interest to disclose.

SOFTWARE TOOL DEVELOPMENT FOR THE ASSISTANCE OF HOSPITAL PHARMACISTS IN MEDICINES’ SHORTAGES MANAGEMENT

Author: Eleni Rinaki, Marinos Petrongonas, Maria Fragiadaki, Leonidas Tzimi

What was done?
A new software module in Hospital Information System (HIS) for monitoring medicines’ shortages (MSs) was conceived by hospital pharmacists (HPs), and it was designed, developed and integrated to the ICT system. This module helps HPs easily track which medicines were totally or partially substituted due to insufficient quantities and gives additional information (such as residual quantity of a medicine on prescription date, on inspection date, pending orders, known shortage) needed for managing MSs. In this tool, MSs and relevant information, such as causes, measures to re-stock and shortage’s impact, can be entered, centrally managed and regularly reported.

Why was it done?
MSs are a frequent problem in our hospital. In a study carried out in 2018, we investigated reported shortages during one year and found that 56% of cases of unsatisfied wards’ requests were due to failure of pharmacy’s procedures to restore availability. In 70% of these cases, time to re-stock was more than 4 days and strong involvement of HPs in following up and taking measures was required. The purpose of this tool is to bring together all relevant information of shortages, aiming to improve hospital pharmacy’s response as well as following-up MSs for further investigation or research.

How was it done?
Implementation of the module in ICT system was made at zero cost by the ICT service provider, following technical specifications designed by HPs. The final product was multi-checked by HPs during development and all technical problems have been resolved accordingly.

What has been achieved?
• Quick intervention of HPs to restore medicines availability is feasible. • We can now have precise and easier follow up, with less human resources required. • MSs are collected, registered and easily utilised to draw conclusions. • HPs’ interventions to deal with MSs are easier to evaluate.

What next?
ICT tools’ development is very important in facilitating hospital pharmacy’s practice, especially when human recourses are restricted. These software modules can be easily incorporated in every HIS. Pharmacists are competent and should have a central role in designing such tools. We are planning to evaluate our new MSs management procedure; in the long run, incorporating in this tool a risk assessment algorithm will be an asset.

Keywords | Drug shortage, information transmission, technology implementation.
Conflict of interest | I have no potential conflict of interest to disclose.

FOUR YEARS OF A REGIONAL MEDICINES OPTIMISATION INNOVATION CENTRE – WHAT HAS BEEN ACHIEVED?

Authors: Michael Scott, Glenda Fleming, Catherine Harrison

What was done?
A Regional Medicines Optimisation Innovation Centre (MOIC) was set up in 2015 by the Department of Health (DoH) in Northern Ireland as a key enabler for the Government policy document, namely the Medicines Optimisation Quality Framework.

Why was it done?
There is a wide recognition that there are significant issues with regard to the issue of medicines, such as the fact that 30–50% of medicines are not taken as required. Thus the DoH decided to set up MOIC as a vehicle to focus activities in order to address this issue and optimise medicines use.

How was it done?
The DoH requested the Northern Health and Social Care Trust to locate the centre within the Trust based on the fact that there had been a long standing academic practice centre with the School of Pharmacy at Queens University of Belfast. Barriers that had to be addressed were highlighting the regional nature of the centre, to get engagement with all sectors of the service and building relationships with other key organisations, including the private sector. Initial core funding was provided by the DoH.

What has been achieved?
MOIC has successfully evaluated improved systems with regard to hospital pharmacy such as doctor-light discharge (90 minutes faster), post-discharge telephone follow-up (30 day readmission rate reduced by 9.9%), and medicines optimisation in older people service in care home settings (reduced Emergency Department attendances and medicines costs). In addition MOIC has been successful in 3 EU funding bids relating to medicines optimisation and has published over 30 papers. It has also been accredited as a Statement Implementation Learning Collaborative Centre (SILOCC) site and also a Centre of Excellence by the Spanish Hospital Pharmacists Association. MOIC has also successfully worked...
GOOD PRACTICE INITIATIVES

with the private sector including pharmaceutical, device and technology companies. It has also been accredited as a knowledge provided by Invest NI.

What next?
MOIC has delivered on its key initial objectives, related to medicines optimisation with good collaborative work across health, academia and commercial organisations, in the UK and Europe. It will have a key role in meeting the WHO Global Challenge of reducing medication-related harm by 50% by 2023 for the region and further optimising medicines systems. This approach with government policy support could be relatively easily established in any other region.

Keywords | Medicines optimisation, research, hospital-home transition.
Conflict of interest | I have no potential conflict of interest to disclose.

THE ADDITION OF A COST ANALYSIS CHANGES THE OUTCOME OF A TENDER

Author: Camilla Munk Mikkelsen

What was done?
Tenders are made on ATC-level 5, but clinically equivalent therapeutic areas are evaluated on ATC-level 4. The analogue competition is an important strategic tool when conducting tenders and elaborating national recommendations on therapeutic areas (TA). Since 2017 the evaluation of TA has been based on a clinical evaluation, an economic evaluation and a tender. Previously the call for tenders was based on clinical evidence only. To evaluate whether the addition of a cost analysis (CA) to a tender evaluation would alter the drug recommendation of TA, a re-evaluation of the processed TA evaluated from October 2018 until October 2019, was made on multiple sclerosis, rheumatoid arthritis and severe asthma.

Why was it done?
Including a CA in the evaluation is time-consuming and I wanted to evaluate whether the obtained drug recommendation was different from the result we could have achieved without the inclusion of a CA. The CA process includes data collection from clinicians within resource consumption per drug, including the costs of time usage of physician, nurse and patient, transportation expenses, monitoring costs, blood tests, co-medicine, utensils, shipping and hospital facilities. When a CA is included it is possible to take the derived costs associated with treatment of different drug dispensing forms and specific costs of treatment with various analogue drugs into account to achieve a recommendation upon the lowest total price including the tender price and the derived costs associated with the treatment.

How was it done?
The drug recommendations on TA made in the period was re-evaluated. Results from the cases with multiple sclerosis, rheumatoid arthritis and severe asthma were evaluated on clinical evaluation, tender price and finally with or without the CA.

What has been achieved?
From October 2018 to October 2019 three TA have ended the evaluation process. The recommendation of severe asthma had a similar outcome regardless of the process used. For multiple sclerosis and rheumatoid arthritis, the CA altered the drug recommendations.

What next?
In order to balance resource consumption on performing CA and the economic impact on the outcome, the plan is to identify TA where it isn’t meaningful to conduct a cost analysis. In all other areas a CA will be included in the standard procedures.

Keywords | Cost analysis, drug therapy outcomes, health economics
Conflict of interest | I have no potential conflict of interest to disclose.

SECTION 2: SELECTION, PROCUREMENT AND DISTRIBUTION

HERA – A NEW TOOL FOR THE QUALITATIVE AND PHARMACOECONOMICAL EVALUATION OF GENERIC DRUG PRODUCTS BEFORE CHANGING BRANDS

Authors: Steffen Ammann, Rudolf Bernard, Georg Berndt, Meike Bindemann, Myga Brakebusch, Jörg Brüggmann, Frank Dörje, Miriam Gyalrong-Steuer, Anita Kellemann, Markus Müller, Elfriede Nusser-Rothermundt, Rainer Riedel, Eva Tydecks

What was done?
We developed an Excel-based tool for the qualitative and pharmacoeconomical evaluation of generics before changing brands (aut-idem substitution) in hospitals.

Why was it done?
Given rising cost-pressure and increasing numbers of supply shortages, changes between generics have become daily practice in hospital pharmacies. To ensure constant treatment quality and patient safety, the equivalence of a potential new product with the current one must be guaranteed before changing brands. So far there has been no transparent, standardised tool for the comparison of generics workable in everyday clinical practice. Developing such a tool was our project’s aim.

How was it done?
A working-group of pharmacists from seven hospitals developed the “HERA” tool (HTA-evaluation of geneRic phArmaceuticals). Starting from a base version, 22 generic products were assessed with the tool during five evaluation rounds. Based on these results the instrument was gradually refined. Within HERA’s Excel matrix a potentially to-be-used generic is compared with the current one must be guaranteed before changing brands. The assessment of pharmaceutical quality is based on 34 criteria from six areas (licensed uses, drug substance, dosage form and excipients, handling, safe design, packaging and storage). The objective quality evaluation is complemented by the assessment of hospital-specific features. Complex substitutions – e.g. associated with a handling change – require involvement of the medical staff using the product. The purchasing decision is taken based on the synopsis of pharmaceutical quality and economic evaluation.

What has been achieved?
The standardised evaluation of product differences before substitutions allows for the early identification of potential problems of brand changes and helps avoiding them for the benefit of patient safety. HERA also guarantees reproducibility and transparent, QM-compliant documentation of product changes. The pharmacies of our purchasing group now routinely use HERA for the assessment of generics before intended brand substitutions. Each evaluation is conducted in one pharmacy and shared with the others via data-cloud.
GOOD PRACTICE INITIATIVES

What next?
We have published a paper on HERA and presented it at the German Hospital Pharmacists congress in 2018. Our aim is to create a network of colleagues with shared access to all colleagues’ HERA product evaluations to reduce the workload for the individual pharmacies.

Keywords | Error-avoiding strategies, generics, quality improvement

Conflict of interest | I have no potential conflict of interest to disclose.

MANAGING MEDICINES SHORTAGES ON A NATIONAL LEVEL – A MULTIDISCIPLINARY COLLABORATION BETWEEN WHOLESALER, HOSPITAL PHARMACIES AND PATIENT SAFETY ORGANISATION IN DENMARK

Authors: Christine Dinsen-Andersen, Hanne Fischer, Anita Gorm Pedersen, Dagmar Bertelsen, Marianne Hald Clemmensen

What was done?
A National Task Force (NTF) for critical medicines shortages (CMS) have been established with the main objective to provide therapeutic and patient safety assessment of CMS on a national level. In addition to this the NTF takes considerations regarding the supply chain into account in the assessments.

Why was it done?
Before the NTF was established, each hospital pharmacy made their own assessments and solutions to CMS. This led to a lack of coordination in the national supply and knowledge sharing. As the number of CMS increased, a need for a coordinated national initiative became evident. The aim of the NTF is to secure better communication to healthcare professionals and to establish clearly defined roles and responsibility in the supply chain from wholesaler to hospital pharmacy. Patient safety aspects should be included in all relevant steps of the process.

How was it done?
To secure national engagement, members of the task force were appointed according to a consensus between the hospital pharmacies in Denmark. The NTF includes participants from 3 hospital pharmacies, the national wholesaler for hospital pharmacies and a patient safety organization. Based on challenges of geographical dispersion and different local practices, an effort was put into: • securing a systematic work flow, for the group; • creating a digital platform with access for members from different organizations; • agreeing on when a medicine shortage is critical.

What has been achieved?
• Early intervention – resulting in opportune solutions. • Agility in allocation of remaining stock between hospital pharmacies. • Optimisation of choice of alternative treatment during period of shortage. • Secure supply of alternative drugs on national level. • Initiate agreement between physicians on choice of alternative on a national level. • Attention to patient safety challenges – preventing adverse events.

What next?
Joined forces have resulted in coordinated and optimised solutions to managing CMS, enabling the hospital pharmacies to secure patient safety. Hence the NTF shall continue its work. Having a national unit as NTF provides the basis for coordinated initiatives and for corporation with health and medicines authorities and market authorization holders.

GOOD PRACTICE INITIATIVES

What next?
We have published a paper on HERA and presented it at the German Hospital Pharmacists congress in 2018. Our aim is to create a network of colleagues with shared access to all colleagues’ HERA product evaluations to reduce the workload for the individual pharmacies.

Keywords | Drug shortage, error-avoiding strategies, patient safety.

Conflict of interest | I have no potential conflict of interest to disclose.

DRUG SERIALISATION: ORGANIZATIONAL AND ECONOMICAL IMPACTS FOR HOSPITAL PHARMACIES

Authors: Quentin Hiver, Agathe Roger, Marine Egot, Ivan Vella, Marie-Hélène Tywoniuk

What was done?
Determining and evaluating, by feedback approach, the organisational and economical impacts of drug serialisation for a hospital pharmacy.

Why was it done?
Community and hospital pharmacists are required to apply the European directive on falsified medicines. In France, we are currently undergoing a transition phase for the progressive generalisation of serialisation. French pharmacies are more or less ahead of schedule for the implementation of decommissioning. In our pharmacy, the decommissioning has been operational since February 2019. After 8 months of practice, we are able to provide data as a basis for work and thinking.

How was it done?
• Step-by-step description of the supply chain after implementation of decommissioning. • Collection of the man-hours necessary for: decommissioning implementation, software training, routine decommissioning, problem solving. • Census of financial investments

What has been achieved?
After analysis of our supply chain, the reception stage appeared to be the most favorable for decommissioning, in terms of practicality, safety and traceability. Several steps have thus been added at reception: Identification of serialized boxes, manual scan, checking of the decommissioning report and the number of decommissioned boxes, printing of the report. The pharmaceutical time necessary for the decommissioning implementation has been estimated to up to 28 hours. The software training was made in small groups of 2–3 agents, requiring 9 minutes per agent on average. The decommissioning is currently requiring 17 minutes for 100 boxes. Over 8 months, the time necessary for the pharmacists to solve problems linked with serialisation (non-operational Hub, corrupted database, error message at decommissioning…) was estimated to up to 7 hours. The financial investment amounts to 17200 euros (software + ergonomic desk + man-hours at implementation).

What next?
The decommissioning itself doesn’t have a major impact on the pharmacy’s organization. But, ensuring a clear and safe supply chain, to identify which boxes must be decommissioned and which boxes can be dispensed, is time-consuming. It goes through a proper working environment with a forward supply chain and traceability tools. Moreover, the encountered problems were mainly due to computer failures, requiring a performing software with an efficient maintenance. We are currently working on improving the ergonomics of the workstation to avoid the risk of musculoskeletal disorders due to decommissioning.

Keywords | Dispensing, barcode verification, feedback.

Conflict of interest | I have no potential conflict of interest to disclose.

Conflict of interest
I have no potential conflict of interest to disclose.

Keywords
Dispensing, barcode verification, feedback.
GOOD PRACTICE INITIATIVES

JOINT PROCUREMENT: LEARNING FROM A PILOT OF JOINT PROCUREMENT OF OLDER PRODUCTS

Authors: Helle Pasgaard Rommelhoff, Lise Grove, Dorthe Bartels, Trine Ann Behnk, Lars Ole Madsen

What was done?
Three European countries decided to implement a joint procurement pilot in order to seek solutions for some of the supply issues in the three markets. This was a consequence of being a small volume market with potentially limited attractiveness for suppliers of older products. An initial evaluation of synergies and discrepancies among the involved countries supported the understanding of how to jointly procure medicines for the hospital sector.

Why was it done?
To share learning from a pilot of procuring pharmaceuticals jointly across borders in three European countries as well as post-learning on planning and execution elements in order to have a successful joint procurement.

How was it done?
The visualised model of a product lifecycle was applied to understand where a pilot of joint procurement would support the supply issues of the older products. This led to a shared understanding between the countries on where the supply issues may occur and potential solutions. An evaluation of building the joint procurement process, which took approximately 2 years, is now available as a best practice with “Do’s and Don’ts” for other countries with joint procurement interest. Criteria in the tenders announced were either price alone or in combination with. One of the tenders included a mandatory bid for all 3 markets, the rest of the tenders were mandatory for 2 of the markets with optional submission for the 3rd market. This was an outcome of hearings with suppliers. The feedback from the hearings was modifying the tender materials into a new proposal for suppliers. A political framework was signed between the countries to have a shared fundament to build on.

What has been achieved?
The final outcome of a joint procurement was evaluated. Evaluation of the submission and preparation part showed that the majority of joint tenders had an efficient competition on price with a representative amount of suppliers bidding. It also showed that it was vital to have collaboration and to listen to stakeholders in order to have a robust insight on what was possible for all involved parties. The thorough preparations supported the process and the final outcome. There was dual engagement between the stakeholders and transparency on the wish from countries to overcome barriers and conduct joint procurement to support supply issues.

What next?
Efficient and timely planning is crucial. Collaborations between the involved stakeholders are important. Mutual understanding of the interests and strategy is helpful in building a shared view on the problems and potential solutions. It is seen as essential, when planning joint procurement, to include logistic thinking already in the early tender planning phase.

Keywords | Drug shortage, pilot study, drug procurement. Conflict of interest | I have no potential conflict of interest to disclose.

ASSORTMENT COUNCIL SECURES THAT MEDICAL PRODUCT AND INFORMATION IS AVAILABLE TO NURSES, PHYSICIANS AND PHARMACISTS

Authors: Katja Heikkinen, Charlotte Vinterflod

What was done?
The hospital pharmacy in Region Västra Götaland, Sweden (VGR) established an assortment council (AC) that assists buyers of medical products within the region. By creating a defined assortment the goal was to direct healthcare professionals to order procured, recommended and cost-efficient medicines and enable structured availability monitoring.

Why was it done?
AC’s mission is to secure that the right product and product information is available as well as in case of shortages assist with alternative products and information. Correct information is fundamental to achieve an effective and secure supply chain of medical products. This reduces time spent on ordering, delivery time is shortened and finding information is more efficient.

How was it done?
A counsel of pharmacists was formed to administer a defined assortment consisting of 95% of the most commonly used medical products. The availability is monitored daily and every disruption of supply is handled in a structured way. Alternative marketed or unlicensed medical products are identified and information about these are communicated through VGR’s ordering system or by newsletters. If an equivalent product is available, it will be delivered automatically without the need for placing a new order. The AC also collaborates with the region’s medical specialists and drug and therapeutics committee (DTC) when searching for alternatives.

What has been achieved?
Defined assortment has been reduced from 6000 products to approximately 3000. In 2018 in addition to the daily updated availability information, 14,300 orders out of 410,000 were automatically replaced with an equivalent product and 41 newsletters about shortages were published. Nurses get more time for patient care when shortages information is readily available, and replacement of equivalent products can be delivered automatically.

What next?
By implementing this way of working in other hospital regions or on a national level, caregivers would be able to free up resources and focus on patient care and at the same time be able to find quality assured information about shortages and alternatives in an efficient manner.

Keywords | Delivery performance, drug shortage, supply chain. Conflict of interest | I have no potential conflict of interest to disclose.

DEVELOPMENT OF A DYNAMIC STOCK MANAGEMENT TOOL: “ILIKECOMMANDS”

Authors: Tristan Terrel, Melinda Place, Berenice Gilloteau, Elodie Dechambenoit, Emeline Devos, Faten Abou-Daher, Anaëlle Decoeene, Thomas Querouau Lamerie, Frederique Danicourt

What was done?
Development of a dynamic stock management tool plugged into a computerised model (Excel©), to integrate all data needed for a stock forecast in terms of specialties, providers, therapeutic classes, last order date, supply disruptions, market, restocking time, turnover, stock, orders, security threshold, average daily consumption, average time of supply, and delivery estimated time for all pharmaceutical products in hospital.

Why was it done?
The main purpose of developing this tool is the need to provide
GOOD PRACTICE INITIATIVES

centralised product parameters through a unique summary screen that permits a regular monitoring of inventory, enabling us to identify the glitches before things get out of control, resolve issues the soonest to improve the stock control system (order threshold, market), maintaining compliance and documenting usage to prevent sudden shortages, in a harmonised way in order to reduce the time spent to order.

How was it done?

It's important to know how much you have from each product, and each dosage of the same product, through a dynamic database that's collecting all data (product code and average daily consumption) and highlighting the order quantity threshold. This reliable inventory is updated on a daily basis with data extracted from our economic and financial management coupled with Business Object®. Using specific formulas and filters, and referring to the decision flowchart, such data allow adjusting and optimising our stock management in real time.

What has been achieved?

First, this tool has allowed us to gather all required data and, subsequently, reduced the need to another application (such as NEWAC© and MAGH2©). Second, it has allowed us to understand the mechanism of order suggestions by displaying characteristics of some sectors (such as expensive products and chemotherapy). Moreover, it improved the management of supply disruptions by showing the solution of each disrupted product in a summary table, which results in significant time saving along the drug supply chain.

What next?

An organised supply chain, a fast response to overcome and handle sudden supply shortages, as well as a huge time saving are the main reasons to rely on this efficient system, which lead to an optimised and secure patient care. Moreover, it fits any computer software, and its application is very friendly to be used in every hospital pharmacy.

Keywords | Supply chain, procurement.
Conflict of interest | I have no potential conflict of interest to disclose.

DEVELOPMENT OF AN INFORMATIC HAZARD VULNERABILITY ANALYSIS TOOL TO MINIMISE MEDICINES SHORTAGES

Authors: Daniele Leonardi Vinci, Enrica Di Martino, Rosario Giannonna, Piera Polidori

What was done?

We created an informatic HVA Tool (HVAT) to assess the risk associated with medicine shortage.

Why was it done?

The 2018 Medicines Shortages Survey conducted by EAHP showed that 91% of responding pharmacists had experienced problems sourcing medicines, therefore it is important to use tools that identify early the shortage risk associated with each drug included in a hospital formulary in order to adopt appropriate countermeasures.

How was it done?

The HVAT created consists of an Excel spreadsheet subdivided into three macro areas: probability that the shortage will occur based on shortage in the last 2 years, magnitude factors which increase the risk of shortage, and mitigation factors which reduce it. A score was assigned to each item in each macro area. The score of the probability was: 1=no previous deficiency; 1.5=one deficiency; 2=two or more deficiencies. Magnitude was divided into: relevance of active substance (AS) (1= not life-saving and not High Risk Medicines (HRM); 2=not life-saving but HRM; 3=life-saving); budget impact (0=no alternative drug; 1=alternative drug costs equal to or less than the deficient one; 2=cost of the alternative drug higher than the deficient one but sustainable for all patients; 3=cost not sustainable for all patients); percentage of patients treated with the drug (1=less than 20%; 2=from 20% to 50%; 3=more than 50%). Mitigation factors were: therapeutic alternative (1=same AS and same route; 1.5=same AS and different route; 2=different AS and route not intravenous (IV); 2.5=different AS and route IV; 3=no alternative drug); stock available (1=for a month of autonomy; 2= autonomy between 1 week and one month; 3=autonomy less than 1 week); availability of the drug (1=drug available in EU; 2=drug available exclusively extra-EU; 3=drug not available).

What has been achieved?

The HVAT obtained allows us to calculate the value of the risk multiplying P by S, where P is the percentage of probability (value of probability obtained/2) and S is percentage of severity [(sum of values of magnitude obtained + sum of values of mitigation obtained)/18]. Based on the score obtained, drugs are classified as: low (<30%); medium (30−60%) and high (>60%) risk of shortage.

What next?

We will implement the HVAT in our hospital in order to reduce the impact of shortages.

Keywords | Drug shortage, supply chain, technology implementation.
Conflict of interest | I have no potential conflict of interest to disclose.

SECTION 3: PRODUCTION AND COMPOUNDING

INTEGRATION OF A ROBOT INTO THE EXISTING WORKFLOW OF THE CYTOSTATIC DRUGS DEPARTMENT IN A HOSPITAL PHARMACY

Authors: Swantje Eisend, Herwig Heindl, Karen Tiede, Sven Jirschitzka

What was done?

The implementation of robotic systems for aseptic compounding cytotoxic drugs requires a specific workflow organisation in the hospital pharmacy to ensure an optimal combination of manual and automated production as well as the effective use of the technology. Since 2017, the APOTECAncho robot has been installed in the hospital pharmacy and one of the first objectives was to create an organisational structure that would allow successful integration of the system into the existing workflow of the cytostatic department.

Why was it done?

Definition of an organisational structure for the best implementation of APOTECAncho technology in the UKSH hospital pharmacy workflow.

How was it done?

The pharmacy has carried out an analysis to identify the active substances that can best be transferred into automated production based on 4 main points: • Pharmaceutical form of the active ingredients: liquid or powder; • Average of vials needed for the compounding of one preparation for each active ingredient; • Average of ml of medication required for the compounding of a preparation associated with each specific active ingredient; • Robot compounding speed. In addition, the pharmacy has also tried to identify the optimal
organisation of personnel and daily workflow for the automated compounding. The effectiveness of these measures and the work organisation defined have been evaluated through an intensive compounding week in April 2018.

What has been achieved?
The analysis of the active substances and the data collected during the “Robotic Intensive Week” showed the following results:
- 42% of the total production was operated by APOTECChemo;
- 87% of active ingredients was handled by APOTECChemo;
- average of 60 preparations per day (with an actual working time of 5 hours);
- average of 12 preparations per hour.

What next?
The study shows that the planning and organisation of the workflow plays a central role in the implementation of a robot solution in a hospital pharmacy. Through the work carried out, the hospital pharmacy has successfully integrated automated and manual production.

Keywords | Individualised preparation.
Conflict of interest | I have no potential conflict of interest to disclose.

TEMPERATURE AND RELATIVE HUMIDITY CONTROL IN THE PACKAGING ENCLOSURE OF SOLID ORAL DOSAGE FORMS

Authors: María Lourdes Recio Blázquez, José Manuel Martínez Sesmero, Lidia Ybáñez García, Gonzalo Hernando Llorente, María Molinero Muñoz

What was done?
A temperature (t) and relative humidity (RH) control system has been established in the enclosure where the solid oral dosage forms (SODFs) are packaged in unit doses.

Why was it done?
The purpose is to control two environmental conditions to guarantee the comfort of the workforce and the quality of the finished product quality. 519,321 SODFs have been repackaged in unit doses last year. The 8% of the SODFs come from multidose containers that have been exposed to environmental temperature and humidity during this process. Employees have been exposed to identical conditions.

How was it done?
Among the diversity of hygrometric sensors commercialised, a device equipped with a condenser was chosen. The operation is based on modifying the capacity when varying the dielectric constant of the medium, in this case, due to varying the amount of water contained in the air between the plates. - $C = \varepsilon \cdot A / D$ - C: capacity value. - ε: dielectric constant. - A: area of the condenser plates. - D: distance between the condenser plates. The device also incorporates a temperature sensor. The t (ºC) and RH of each moment are shown, for visual inspection, on the device screen. The data obtained with certain time frequency can be stored on a Secure Digital memory card and be downloaded on a computer that has that program installed (on spreadsheet format) helping to obtain graphics as well.

What has been achieved?
The range of t (ºC) has remained stable between 26 and 24ºC for 6 months, with minimal variations from maximum 28.5ºC to minimum 23.4ºC. The UNE 100713: 2005 is met. RH has been below 45% during 68% of the days worked, which has favored the repackaging of the units affected by humidity but not the worker. The range of RH has varied between 56.3% and 23.6%, not complying with the UNE 100713: 2005 standard.

What next?
Metabolic rate, clothing insulation, air temperature, radiant temperature, air speed and humidity shall be addressed when defining conditions for acceptable thermal comfort. It would be helpful to regulate the commercialisation of multidose pharmaceutical specialties susceptible to deterioration when opening the package.

Keywords | Drug stability.
Conflict of interest | I have no potential conflict of interest to disclose.

THE RISK MANAGEMENT OF THE PHARMACY PREPARATIONS IN THE HOSPITAL PHARMACIES

Author: Adriana Durcanska

What was done?
The quantitative risk assessment of the pharmacy preparations for stock in hospital pharmacies (HPs) in accordance with Resolution EDQM CM / Res (2016) 1; to specify the decision criteria for the risk assessment; the risk management of the pharmacy preparations for stock in the country; to design a check list of the risk assessment for extempore preparations.

Why was it done?
The quality and safety standards of pharmacy preparations are not harmonised throughout Europe. They fall under the national competencies of individual European countries.

How was it done?
Out of the total number of 53 hospital pharmacies contacted, 5 pharmacies sent a suitable file.

What has been achieved?
A total of 170 types of medicines are being prepared in HPs. One HP had the result of the risk ≥ 100 when preparing ophthalmic medicines. Annex A is a check list designed to assess the risk of extempore preparations.

GOOD PRACTICE INITIATIVES

What next?
The management is and will be forced to consider its introduction or to use another model: hospital - GMP / outsourcing / central pharmacy preparing and distributing. The aim of using the document in hospital pharmacies of the country.

Keywords: Active ingredient, national standards.

Conflict of interest I have no potential conflict of interest to disclose.

REPACKAGING OF INTRAVITREAL BEVACIZUMAB

Authors: Margherita Galassi, Chiara Della Costanza, Claudia Tirone, Elena Alliprandi, Ernesto Ruffino, Sara Bertoli, Eleonora Ferrari, Elisabetta Martinelli, Vito Ladisa

What was done?
We implemented a production process to repackage a drug to be used in treatments not covered by marketing authorisation. Bevacizumab was split into fractional doses for off-label intravitreal injections; the doses obtained were given to our hospitalised patients as therapy for uveal melanoma and provided to hospitals in our region as therapy for patients with age-related macular degeneration (AMD) and diabetic macular oedema.

Why was it done?
Intravitreal bevacizumab is refunded by National Health System for AMD and diabetic macular oedema but the splitting process must be carried out only by authorised pharmacies. Recently the established regional refund price was lowered to €55/dose that covers the costs of intravitreal bevacizumab but not the other authorised drugs ranibizumab and aflibercept. Our Centralized Pharmacy operated the repackaging of intravitreal bevacizumab for internal patients but we implemented a new process and a new procedure in order to provide doses to hospitals not equipped in performing sterile preparations.

How was it done?
The procedure for preparing intravitreal injections was reviewed to optimise traceability aspects of processing batches, individual doses of finished products and particularly to choose the most suitable packaging for transport to hospitals that will administer the drug. Further quality control to regional law was established on processes and finished product: environmental, instrumental, maintenance controls. All processes were validated in accordance with applicable regulations. Agreements related to prescription, purchase, conservation and transport of bevacizumab doses were signed with the hospitals that administer the drug.

What has been achieved?
The price refunded for a single intravitreal dose of an anti-VEGF (vascular endothelial growth factor) drug from August 1 2019 is €55, previously the price for each single dose of ranibizumab was €600. Considering that AMD therapy requires a monthly injection for about one hour. The working area is at the end of each working session irradiated with UV light for 4 hours. Microbiological monitoring of the working area is done weekly in operation by passive air sampling (2 settle plates at predefined locations S1, S2) and surface sampling (3 contact plates at predefined locations O1, O2, O3) and colony-forming units (CFU) are counted after incubation. Results of the microbiological samples (CFU ± standard deviation) were compared for period 1 and 2. On average, 0 CFU (n=52) were detected (period 1) and 0.04±0.2 CFU (n=44) (period 2) on settle plates. During period 1 on average 0.04±0.19 CFU were found at O1, 0 CFU on O2, and 0.81 CFU±4.23 at O3 (n=27 each). During period 2, 0 CFU were detected at O1, O2 and 0.44±0.2 CFU at O3 (n=25 each). The extended interval for the intensive cleaning process did not affect the microbiological cleanliness. The CFU limits set for clean room class A were met.

What next?
Maintaining the daily cleaning procedure, the interval of intensive cleaning can be extended to one month without increasing the microbiological contamination risk and saving two hours of cleaning.

Keywords: Ready to administer, L01 – cytostatics, aseptic preparation.

Conflict of interest I have no potential conflict of interest to disclose.

IMPLEMENTATION OF INTRAVITREAL TISSUE PLASMINOGEN ACTIVATOR INJECTION INTO PRACTICE

Authors: Liisa Eesmaa, Katrin Sõnajalg, Ülle Helena Meren

What was done?
Ophthalmologists contacted the pharmacy to work out a plan for emergent cases of patients with large submacular haemorrhage in the better seeing eye. The pharmacists worked out the logistically simplest, economical affordable solution to prepare the injection in a cleanroom setting.
GOOD PRACTICE INITIATIVES

Why was it done?
Intravitreal tissue plasminogen activator (tPA) injection is a guideline recommendation for patients with medium, large or thick submacular haemorrhage mainly due to exudative age-related macular degeneration (AMD). This treatment has been available: off-label use, rare demand, high price (generic unavailable, the cost uncovered by health insurance).

How was it done?
The pharmacy came up with two models: 1. Compound intravitreal injection (50 μg/dose) from Actilyse 50mg vial ($375) containing substance for intravenous infusion. The rest of the vial would possibly be used in the neurology department during the next 24 hours. The costs would be shared based on microgram use. 2. Use unregistered Actilyse cathflo 2mg vial. Application for permission and delivery would take up to 6 weeks and drug shortages would be usual. The price for 50 μg would be €65. For the first two patients the first model was used. It was logistically complicated for the neurology department as they needed to change their everyday practice. The second model has now been introduced into practice and used for another two cases. It is accepted by the doctors and pharmacists.

What has been achieved?
Four patients have received new treatment with intravitreal tPA in addition to the common practice of pneumatic displacement of the haemorrhage with intravitreal anti-VEGF (vascular endothelial growth factor) injections or intravitreal anti-VEGF monotherapy. The treatment was well tolerated by the patients with some benefit to visual function. The pharmacy is ready to prepare tPA injections during working days. The price of the injection is acceptable.

What next?
The University hospital became interested to start the same treatment. The second model was presented to their hospital pharmacy. Our ophthalmology department is now equipped to inject tPA into the subretinal space during vitrectomy to increase the efficacy of the procedure and improve patients' visual outcome.

Keywords | Aseptic preparation.
Conflict of interest | I have no potential conflict of interest to disclose.

DIAZOXIDE 10MG/ML ORAL SUSPENSION AS A COST-EFFECTIVE ALTERNATIVE TO THE COMMERCIAL PREPARATION

Authors: Beatriz Sánchez Sanz, Iván González Barrios, Síria Pablos Bravo, Sara Ortiz Pérez, Cristian Rosas Espinoza, María Arrieta Loitegui, Francisco Martínez de La Torre, Dolores Canales Síguero, José Miguel Ferrari Piquero

What was done?
Diazoxide is the first line therapy in infants with hypoglycaemia due to hyperinsulism. A formulation to facilitate the dosage in newborns has been developed due to the increasing demand at our hospital.

Why was it done?
The objective is the elaboration of a formulation as a cost-effective alternative to the diazoxide oral suspension not commercialised in Spain, to treat patients with hyperinsulinaemic hypoglycaemia.

How was it done?
To evaluate the solubility, a research on Pubmed was executed including terms such as “diazoxide AND solubility” and “tiazides AND solubility”. To determine the stability, the agreement approved by the “Pharmacotechnics Group of the Spanish Society of Hospital Pharmacy” concerning the viability of the non-sterile oral formulations was reviewed. In terms of effectiveness, a retrospective observational study was conducted. Demographic and clinical (duration of the therapy and blood sugar levels 24 hours after first administration, sorted as “sensitive” if those levels were over 60mg/dL) variables were collected.

What has been achieved?
Carboxymethyl cellulose gel 1.5% (CMC) was evaluated as suspending agent, with adequate results. The steps to compounding the formulation of diazoxide 10mg/mL oral suspension were: 1. Four capsules of 25mg were opened and spread over a mortar. 2. 10ml of CMC was measured on a test tube. 3. CMC was added slowly over the powder while stirring the mixture to obtain a homogenized milky creamy. 4. Suspension was stored in an amber bottle. Following our stabilities studies and the lack of preservatives, an expiration date of seven days at ambient temperature was assigned. In our hospital, seven neonates (four males) aged 5.8±2.3 days have been treated with this oral suspension, for an average period of 28 days. Six of them were classified as “sensitive” with levels of 105±30mg/dL while one showed no improvement. Analysing the global expense, one pack of 100 capsules costs €21. Thus, 1 unit of our suspension 10ml cost €0.84 versus 1 bottle of 30ml (€473); the savings are remarkable.

What next?
The preparation constitutes a suitable alternative by using a simple and cheap technique since its introduction. In the future, full studies of stability must be designed to prolong its period of validity and monitor its security.

Keywords | Drug formulation, manufacturing, small scale production.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPROVING ANTIBIOTIC STEWARDSHIP AT A HOME HOSPITAL UNIT BY IMPLEMENTING THE PRODUCTION OF ELASTOMERIC PUMPS CONTAINING BENZYLPIenicillin

Authors: Maria Rautamo, Niina Laihanen, Laura Lehtola

What was done?
The production unit at the hospital pharmacy began preparing elastomeric pumps containing benzylpenicillin for Helsinki city home hospital unit for the treatment of outpatients suffering from erysipelas. A pilot study was conducted in November 2018 before further implementation of the elastomeric pumps.

Why was it done?
Erysipelas was the most commonly treated infectious disease at the home hospital unit in 2015. Previously the standard treatment was broad-spectrum antibiotic cefuroxime three times daily. The infectious disease specialist wanted to improve the antibiotic stewardship by shifting from cefuroxime to a continuous infusion of narrow spectrum benzylpenicillin. The aim of the initiative was also to improve patient care and reduce the number of treatment visits and thus overall treatment costs.

How was it done?
A benzylpenicillin 10 million IU infusion solution was prepared and transferred to elastomeric pumps (FloFusor LV10, Baxter) in the production unit at the hospital pharmacy. The production method was developed by pharmacists at the hospital pharmacy in cooperation with Baxter and the formulation as well as stability

9 | 25th CONGRESS OF THE EAHP
GOOD PRACTICE INITIATIVES

A pilot study was planned and executed in cooperation with Helsinki city home hospital unit. The batch size of prepared elastomeric pumps was 7 pumps a week and the overall pilot period consisted of 5 weeks. A total of 8 patients were treated during this period. The opinions of nurses and patients about the use of elastomeric pumps were investigated through a questionnaire. The impact on treatment costs were also evaluated.

What has been achieved?
Elastomeric pumps containing benzylpenicillin have been implemented as a standard treatment for erysipelas at the home hospital unit. Cost savings from the pilot period of 5 weeks were 125 nurse visits corresponding to approximately 100 hours of work as well as 200 km of driving for nurses to patients’ homes. The patients were very pleased with the elastomeric pumps and the fact that the pump had to be changed only once daily.

What next?
Production and delivery of elastomeric pumps containing benzylpenicillin has expanded to other home hospital units. The implementation of elastomeric pumps containing other active ingredients is under investigation.

Keywords: Optimisation of therapy, cost saving, aseptic preparation.
Conflict of interest: I have no potential conflict of interest to disclose.

PRODUCT DOSSIER AND RISK EVALUATION FOR EXTEMPORANEOUS PREPARATIONS KEEPS FOCUS ON PATIENTS

Authors: Mette Lethan, Marianne Lund Sørensen, Jakob Kronkvist Hoe, Heidi Waenerlund Poulsen, Louise Rasmussen Duckert

What was done?
A Product Dossier (PD) for extemporaneous preparations (EP) was established in our hospital pharmacy. They contain a risk evaluation and information about the specific value of the preparations, a demonstration that the active pharmaceutical ingredient(s) (API), excipients and containers meet relevant requirements, an evaluation of the stability of the product, and a description of the preparation process and analysis.

Why was it done?
On July 1st, 2016, an EU resolution caused a new national requirement to establish a PD for new as well as known EP’s produced by the hospital pharmacy. PD’s had to be established for 450 known products in our facilities.

How was it done?
To approach the task, an interdisciplinary project group was formed. It consisted of members from Quality Assurance/Control, Stability, Drug Information Center and Production. A formulation for a collaborative approach was established to ensure a high and uniform quality of the PDs. The information obtained included e.g. information and evaluation of API and excipients, ongoing stability studies, indication of the drug and alternative preparations. A few examples were concluded in the group to ensure a quality baseline of the PDs.

What has been achieved?
PDs for 150 products have been successfully implemented. In some cases the formulation regarding excipients was changed to better suit the patient group. In other cases, it was evaluated whether a drug registered in another country could better ensure patient safety. Based on stability data, storing of some products was very important. Information was received from Baxter. The pilot study was planned as a standard treatment for erysipelas at the home hospital unit. Cost savings from the pilot period of 5 weeks were 125 nurse visits corresponding to approximately 100 hours of work as well as 200 km of driving for nurses to patients’ homes. The patients were very pleased with the elastomeric pumps and the fact that the pump had to be changed only once daily.

What next?
Through the interdisciplinary approach PDs ensure focus on the quality, safety and benefits for the patients. All existing EPs will be maintained and evaluated anytime there may be a change in production. For all new products a PD will be prepared according to the guidelines set up. Having the information in one document (PD) ensures that all departments can quickly obtain information needed to consistently maintain and evaluate product quality and thereby the specific value of our production.

Keywords: Compounding, drug formulation, product information.
Conflict of interest: I have no potential conflict of interest to disclose.

PUBLICATION OF THE FIRST TEXTS IN THE EUROPEAN PAEDIATRIC FORMULARY

Authors: Jane Francomb, Dirk Leutner

What was done?
The European Paediatric Formulary was launched at the end of 2019. It is a freely available online publication for pharmacists and clinicians that is intended to provide guidance on the use and preparation of paediatric medicines of appropriate quality when a suitable licensed medicinal product is not available. The first two monographs and two explanatory texts of the European Paediatric Formulary have now been published by the European Directorate for the Quality of Medicines & HealthCare (EDQM).

Why was it done?
Formularies for extemporaneous formulations of paediatric medicines of appropriate quality are currently available in some regions or countries, but no pan-European equivalent exists. Some formulations in use are not appropriate due to a lack of knowledge of best practices. The idea behind the new formulary is to collect, review and then select the most appropriate formulations currently used in Europe which meet today’s requirements.

How was it done?
Criteria for selection and evaluation of formulations were developed by 2015. Since then the current work is carried out by the European Paediatric Formulary Working Party under the supervision of the European Pharmacopoeia Commission and the European Committee on Pharmaceuticals and Pharmaceutical Care (CD-P-PH). The EDQM provides the scientific secretariat. Monographs for development were prioritised based on patient need. Many formulations currently described in national formularies and other well-established formulations have been gathered from stakeholders throughout Europe. The information available for the most appropriate formulation was transferred into a common format with full quantitative composition details, extemporaneous preparation instructions, validated test methods for quality control and storage conditions.

What has been achieved?
Monographs for hydrochlorothiazide 0.5mg/mL oral solution and sotalol hydrochloride 20mg/mL oral solution were published at the end of 2019. These were accompanied by an introduction and general principles which describe the purpose and content of the European Paediatric Formulary.

What next?
Monographs for azathioprine oral suspension, chloral hydrate oral solution, furosemide oral solution, isoniazid oral solution, omeprazole oral suspension and ranitidine oral solution and a
What has been achieved?
The case of a 33-year-old male, HPV 6 positive, with anal condylomatosis and high-grade epithelial dysplasia, most of which had been resected and burned previously without satisfactory results. Imiquimod was added as an adjuvant treatment in suppositories for administration three days a week at night. Twelve suppositories were dispensed each month, and the duration of treatment was 2 months. During treatment the patient reported good tolerance, no itching, no pain in the area of administration. One month after finishing the treatment, no new macroscopic lesions were observed, nor recurrence of previous ones in anoscopy examination.

What was done?
The aim of the study is to describe the formulation and results obtained after treatment with imiquimod suppositories manufactured by the Pharmacy Hospital Service.

What was done?
Identify health problems involved in handling raw materials that we use in the preparation of magistral formulations. Define personal protective equipment and installations necessary for handling. Improve work safety of area’s staff.

How was it done?
Hospital Pharmacy Services staff may be exposed to hazardous substances, involving a risk to health. For this reason, is important to identify these substances and measures must be taken to ensure maximum safety for the staff at work. We decided to review the topic when we saw in the Technical Document on Prevention Measures for the Preparation and Administration of Dangerous Drugs, published by the by the National Institute for Safety and Hygiene at Work (INSHT), there are no specific recommendations for protection of raw materials used in magistral formulas; it only refers to dangerous drugs.

How was it done?
We have to update raw materials discharged in 2018 in the Pharmacy Service. The safety data sheets were reviewed in the National Institute for Occupational Safety and Health, paying special attention to dangerous identification and exposure controls/individual protection sections. In this database there is not all the information, so we have to use data sheets of our supplier. We studied Regulation (EU) N° 1272/2008 on classification, labelling and packaging of substances and mixtures to determined 3 variables: health dangerous, using hazard class like REPR B, MUTA 2 and STORE RE 1; personal protective equipment and installations necessary for handling. Improve work safety of area’s staff.

What has been achieved?
We obtained a list of 20 raw materials. 40% of raw materials aren’t considered hazardous.

What has been achieved?
Of 60% that are classified as hazardous, they were divided into 2 levels: the first, with categories such as serious eye injuries, skin disorders, respiratory tract irritation or toxicity if swallowed; it includes 75% of raw materials. The second level, which includes the rest of products considered hazardous (25%), is associated with 3 categories: REPR B or possible carcinogenicity, that influence the fertility and development of the fetus; MUTA 2 or genetic defects, that are associated with germ cell or mutations; and STORE RE 1 that can cause damage to organs after prolonged or repeated exposure. For 40% of raw materials there are no specific recommendations about using personal protective equipment. With 60% it is recommended to use self-filtering masks for particles, protective gloves and glasses. For 16% of materials, protective clothing against chemicals is required too. In 65% of raw materials, no specific installation is required to handle them. However, for 25% it is recommended to have well-ventilated areas and with 10% a chemical smoke cabin.

What was done?
The contribution of the Pharmacy Service through the development of imiquimod suppositories has facilitated the achievement of early health results in a complex treatment pathology, allowing rectal administration through suppositories made from a specialty marketed in envelopes for topical use and allowing rectal administration through suppositories. The development of imiquimod suppositories has facilitated the achievement of early health results in a complex treatment pathology, allowing rectal administration through suppositories.

How was it done?
Suppositories of imiquimod 6.25mg were prepared from Aldara® 5% cream sachets; stearic mass was used as excipient to convey the active principle adding about 2.2g/suppository and molds of 2g for its preparation. The bain-marie was used for fusion and mixing the components. A sterile gauze was included to facilitate extraction if there was anal irritation. The established shelf life was 6 months between 2–8°C. Suppositories were dispensed individually wrapped in aluminium foil and protected from light added a diptych of information to the patient.
Good Practice Initiatives (GPIs)

What next?
Most of raw materials we use to make magistral formulations are considered hazardous according to Regulation (EU) n°1272/2008. For this reason, we developed a protocol that included individual protection measures and laboratory equipment necessary to handle such raw materials. So it is possible to normalise the preparation of magistral formulations guaranteeing the safety of the area’s staff. We have devised a plan for review and update of the protocol, following current regulations.

Keywords | Preparation.
Conflict of interest | I have no potential conflict of interest to disclose.

SECTION 4: CLINICAL PHARMACY SERVICES

DOES RECORDING OF MEDICATION HISTORY BY PHARMAECONOMIST IN THE EMERGENCY DEPARTMENT HAVE AN EFFECT AT OTHER HOSPITAL DEPARTMENTS?

Author: Maria Abrahamsen

What was done?
At hospitalisation, part of the routine is to record the patient’s medicinal history. We implemented recording of medicinal history (MH) in the emergency department by a pharmaeconomist instead of by a doctor.

Why was it done?
The aim of the initiative was, among others, to study whether MH by a pharmaeconomist in the emergency department has positive effects in other departments. Since the majority of hospitalised patients are admitted through the emergency department it is expected that changes related to admission procedures affect other departments in the cases where patients are hospitalised. In theory recording of MH should be easy, due to the use of Shared Medication Record (FMK). FMK is an updated electronic medication list including all prescriptions filled at pharmacies within the last 2 years. In reality, often neither FMK nor the recorded MH is correct. MH recorded by pharmaeconomist or pharmacist is implemented in other emergency departments, but the effect in other hospital departments has yet to be documented.

How was it done?
The pharmaeconomist was present at the emergency department weekdays during daytime to record the MH of newly admitted patients. When the pharmaeconomists weren’t present the doctor recorded the MH. To evaluate the effect in other departments, data registered by pharmaeconomists at the department of geriatrics about medicinal changes, types of changes and number of patients with changes were used, combined with hospital data about the number of patients in the geriatric department at a given time. Data from 10 months before the initiative was compared with data from the 9 month test period.

What has been achieved?
At the department of geriatrics both the need for medicine changes due to inadequate MH and the number of patients with medicine changes related to inadequate MH was significantly reduced (p 0.05). The proportion of patients with changes was reduced from 43.7% to 36.9% and the number of changes per patient was reduced from 0.65 to 0.49. For both parameters the reduction is seen immediately after implementing MH by a pharmaeconomist in the emergency department. The reduction has released time for nurses, doctors and pharmaeconomists working outside the emergency department, though it isn’t possible to quantify the amount of released time.

What next?
Incorporation of a specialised professional such as a pharmaeconomist early in a hospitalisation gives doctors, nurses and pharmaeconomists working outside the emergency department extra time for other tasks. The effect of the initiative depends on the procedures for admissions since it requires that most patients are admitted through one department at the hospital.

Keywords | Medication history.
Conflict of interest | I have no potential conflict of interest to disclose.

EVALUATION OF OUT OF HOURS ACCESS TO MEDICATION IN AN ACUTE GENERAL HOSPITAL AND INTRODUCTION OF AN ADC MACHINE FOR ACCESS TO DRUGS OUT OF HOURS

Author: Eimear Heslin

What was done?
An audit was carried out to quantify the frequency of out of hours (OOH) access to the pharmacy and establish the number of and types of medications being requested. It was hypothesised that trends revealed by the study could identify targets for quality improvement initiatives and provide baseline data against which improvements could be measured.

Why was it done?
Timely access to medications is a key component of medication safety and an important measure for Connolly Hospital Pharmacy service. There is no weekend or on-call service in Connolly hospital so this poses a particular challenge outside of normal working hours. Urgent medications if required and not available elsewhere in the hospital must be accessed from the pharmacy by a site manager. If not familiar with the layout of pharmacy and certain drugs this can lead to increased medication errors.

How was it done?
In February 2017, a new process of recording OOH access to medications was established and a database was created to record access frequency and items taken. Data were analysed to determine trends with respect to wards requesting OOH medication and medications required. These in turn were cross-referenced against ward stocklists.

What has been achieved?
Over 47 weeks the pharmacy was accessed OOH 89 times, for 472 ward requisitions from 17 wards (range 1−62/ward); 2091 items were requested in the time period (range 1−390 per ward). An average of 4.43 items were requested per ward per visit (range 1−12.4). On average, 17.2% of items dispensed OOH were stocklist items for the requesting ward (range 0−40%). Then with this information a business case was put forward and the purchasing of an Automated Dispensing Cabinet (ADC) was approved for use by nurses outside of pharmacy working hours. In conjunction with this a ward stock-drug database was created for nurses to use at ward-level. This database is a means of searching if a drug is stocked on the ward requiring a certain drug or if stocked in the ADC machine or stocked in a nearby ward so that it can be borrowed from that ward if not needed by the ward that has it in stock.

What next?
Authors have devised a plan for review and update of the protocol, following current regulations.

Conflict of interest
I have no potential conflict of interest to disclose.
GOOD PRACTICE INITIATIVES

What next?
A large reduction in OOH access means the ADC machine has been successful and a similar machine in the Emergency Department would also be beneficial.

Keywords | Acceptance rate, automated dispensing cabinets, drug safety.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPLEMENTATION OF PATIENT INTERVIEW IN CONNECTION WITH MEDICATION REVIEW IN AN INPATIENT PSYCHIATRIC WARD

Authors: Majken Narskov Petersen, Dorthe Bonnerup, Louise Thorsen, Lona Louring Christrup, Sune Puggaard Vogt Straszek, Charlotte Olesen

How was it done?
The initiative took place in the Department of Affective Disorders, at Aarhus University Hospital, Denmark. Initially, the medication review was performed by hospital pharmacists without patient interview based only on medical records. We implemented a patient interview to give a more clinically relevant medication review. The interview included a structured questionnaire on typical side effects of antipsychotics.

Why was it done?
Medication review with patient interview provides the opportunity to clarify the patient's overall drug intake along with identifying the patient's experienced side effects. Medication review with patient interview we believe gives a more realistic picture of experienced drug related problems (DRP) and potentially DRP. This again makes the medication review more relevant and useful to the doctors.

How was it done?
The cost of a new workflow is always weighed against the outcome. We therefore planned and conducted a pilot study. The cost was measured as the time used for the patient interview and it was 17 minutes on average. We used DRP as the outcome. DRP is an accessible measure for the immediate outcome of a medication review. Sixteen medication reviews without patient interview were conducted and the same 16 patients were interviewed for a second medication review. Patient interview increased the number of identified DRP from 52 to 68. Due to the interview 28 new DRP were identified and 12 DRP found before the interview were withdrawn due to irrelevance.

What has been achieved?
Patient interview has been implemented in one of three inpatient psychiatric wards and in one of four outpatient clinics where the pharmacists conduct medication review. The structured questionnaire has been further developed and now includes common side effects caused by antipsychotics, antidepressants, benzodiazepines and mood stabilizers.

What next?
We still use the pilot study to show how medication review can be more relevant by using patient interview. The hospital pharmacy in Aarhus works on several levels in order to implement medication review, preferably with patient interview.

Keywords | Medication review, patient involvement, psychiatry.
Conflict of interest | I have no potential conflict of interest to disclose.

SUCCESSFUL DEVELOPMENT OF A SHARED INFORMATION DATABASE FOR HOSPITAL PHARMACIES IN DENMARK – BENEFITING FROM AGILE PROJECT MANAGEMENT

Authors: Stine Ulso, Hilde Omestad, Susanne Weng Ramer, Sisse Emilie Mejsner, Mads Nielsen, Jesper Heltoft-Christensen

What was done?
A new database was developed for documentation and quality assurance of drug related queries received by hospital pharmacies in Denmark. The information in the database is shared across all hospital pharmacies in Denmark and is an important tool for the Medicines Information Centers located there. Existing queries were transferred from the old to the new database.

Why was it done?
A working group was established consisting of three pharmacists and superusers from three different hospital pharmacies, one project manager employed by the sponsor (Amgros) and two developers employed by the new supplier (Progressive). The project was structured using monthly physical meetings and ad hoc video conference meetings. The work tasks in the development process were divided and carried out in two-week sprints by the developers and subsequently tested and validated by the pharmacists. All participants agreed to a periodic heavy workload and showed great flexibility. The close and frequent collaboration between all members affected the teamwork in a positive way, hence the group was motivated and managed to agree on common solutions and compromises despite different database usage and different locations.

How was it done?
A working group was established consisting of three pharmacists and superusers from three different hospital pharmacies, one project manager employed by the sponsor (Amgros) and two developers employed by the new supplier (Progressive). The project was structured using monthly physical meetings and ad hoc video conference meetings. The work tasks in the development process were divided and carried out in two-week sprints by the developers and subsequently tested and validated by the pharmacists. All participants agreed to a periodic heavy workload and showed great flexibility. The close and frequent collaboration between all members affected the teamwork in a positive way, hence the group was motivated and managed to agree on common solutions and compromises despite different database usage and different locations.

What has been achieved?
A new, stable and more intuitive database was developed in only 5 months due to the structured and flexible way of working and a close motivated teamwork. The database was taken into use from one day to another and quickly adapted. Since the development several hospital pharmacies have increased their use of the database. The amount of information shared nationally has improved.

What next?
The initiative resulted in a useful tool implemented within a short time. The way of working intensively and focused with physical meetings and video conferences made a good basis to succeed. Especially the sprint cycles can be used in different healthcare settings involving different projects.

Keywords | Databases, electronic documentation, management
Conflict of interest | I have no potential conflict of interest to disclose.
Good Practice Initiatives (GPIs)

MULTIDISCIPLINARY CAR-T TEAM

Authors: Margherita Galassi, Chiara Della Costanza, Claudia Tirone, Sara Bertoli, Ernesto Ruffino, Eleonora Ferrari, Elena Aliprandi, Vito Ladisa

What was done?
A multidisciplinary team (CAR-T team) was constituted for the management of CAR-T therapies (Chimeric Antigen Receptor T). The pharmacist was included in the team for the planning and organisational phase of the process.

Why was it done?
CAR-T cell therapies are a new advanced type of personalised immunotherapy against cancer. In the EU the authorised therapies are tisagenlecleucel and axicabtagene ciloleucel, both used in our centre as third line for the registered indication of diffuse large B-cell lymphoma. CAR-T therapies production and administration process consists of multiple stages: patient’s leukapheresis, genetic engineering of lymphocytes, lymphodepleting chemotherapy (LC), CAR-T cell infusion, monitoring of the patient. Considering the complexity of the procedure and the observance of specific schedules, these therapies should be administered in highly specialised centres complying with specific organisational requirements, with disposal of an adequate multidisciplinary team.

How was it done?
The pharmacist is responsible for the approval of the physician’s prescription, the LC preparation according to Good Manufacturing Practice (GMP), the LC distribution on scheduled time, the making available of treatments for supporting the patient until CAR-T infusion, and treatments after infusion for management of adverse events. At the arrival of the CAR-T product, the pharmacist is responsible for the check and release of it in good condition. The LC protocols foresee the administration of cyclophosphamide and fludarabine on the 5th, 4th and 3rd day before the CAR-T infusion, and are defined on the basis of the summary-of-product characteristics. The medications are available of treatments for supporting the patient until CAR-T infusion, and treatments after infusion for management of adverse events. At the arrival of the CAR-T product, the pharmacist is responsible for the check and release of it in good condition. The LC protocols foresee the administration of cyclophosphamide and fludarabine on the 5th, 4th and 3rd day before the CAR-T infusion, and are defined on the basis of the summary-of-product characteristics. The medications are provided locally and refunded by the national health system.

What has been achieved?
In our center 8 patients were treated with compassionate use of axicabtagene ciloleucel. The pharmacist’s presence in the multidisciplinary team was advantageous because, through validation of the therapies and verification of dosages, they guarantee further security to the patients. The high-tech automated centralisation and computerisation of chemotherapies at our centre ensured quality and safety of the preparations.

What next?
The realisation of defined paths and codified proceedings, the respect of fundamental timings for the success of the process and the chemotherapy preparation centralisation could lead to increased investment, decisive for obtaining a high quality product and process level. The experience, now limited to haematology, could be used for future CAR-T applications.

Keywords | Multidisciplinary team, high risk medication.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPLEMENTING A NEW PHARMACEUTICAL CARE PROCESS IN SURGERY

Authors: Sarah Poggio, Anne-Sylvie Dumenil, Sandrine Roy, Claire Henry

What was done?
We redesigned the pharmaceutical care process for programmed patient circuits in orthopaedic and visceral surgery by providing the “best possible medication history” (BPMH) in the patient’s electronic medical record (EMR) before anaesthesia consultation (AC).

Why was it done?
BPMH on admission has been performed in these departments since 2011. An analysis of the process and prescriber use of BPMH highlighted an underutilisation; average consultation rate was 29.8%. The main reasons were the online publishing interval of the BPMH and competition with the AC report which also displays medication. A previous study showed a 70% rate of patients with unintended differences between BPMH and the AC report.

How was it done?
Due to a lack of coordination, we exchanged using surgery
GOOD PRACTICE INITIATIVES

with anaesthesia schedules to select patients, thus improving prioritisation. We created support documents for students, describing how to conduct a phone interview in order to reassure unfamiliar patients, to gather useful data (GP, pharmacy, prescription) to produce a BPMH, to visit inpatients when admitted to confirm the BPMH’s accuracy and to assess patient satisfaction with the process. We trained 6 students and presented our work at an anaesthetist staff meeting.

What has been achieved?
Among 195 patients included from June to October 2019, 70.2% BPMH before admission were successfully published online (137/195), 67 went through the complete care path (from home to discharging), 12 never came for AC and/or surgery, 58 were published but waiting for patient’s admission and 58 failed. The reasons we failed to publish on time included inability to reach patients (31.6%), lack of sources (21.1%), time shortage before AC (17.6%), surgery cancellation (14.0%) and refusal (7.3%). 1.58 ±0.85 calls were needed to reach a patient, 13 BPMH required modification after admission (19%), and patient satisfaction on average was 5.11/6 when asked whether the call, the medication management during hospitalisation and the confirmation interview went well. Finally, the consultation rate of BPMH evolved from 29.8% in 2017 to 72% since we changed practices.

What next?
Implementing this new process in the care path streamlines information transfer between the different stakeholders (anaesthetists, surgeons, pharmacists) and provides a better integration of pharmaceutical care in surgery wards as an efficient support system for prescribers.

Keywords | Clinical pharmacy services, medication reconciliation, pharmaceutical care.
Conflict of interest | I have no potential conflict of interest to disclose.

TOOL FOR INTERDISCIPLINARY COLLABORATION AND SHARED DECISION MAKING

Authors: Pernille Printzlau, Nanna Skyttegaard Mortensen, Signe Kristensen, Troels Bygum Knudsen, Nathalie King Otoo

What was done?
We made a tool to improve the interdisciplinary collaboration around medication reviews and to help the process of shared decision making. The tool categorises interventions suggested by the pharmacist in red-yellow-green boxes, indicating the order of the interventions recommended by the pharmacist.

Why was it done?
When the pharmacists make medication reviews it is often a long, detailed review with several interventions. A tool that would quickly give the physician an overview of the interventions suggested by the pharmacist was needed. Furthermore, a tool was needed in the process of shared decision making between the physician and the patient regarding the possibilities of deprescribing.

How was it done?
The tool was developed and tested by using the Model of Improvement. The physician stated that the tool gave him the needed overview and, in his experience, furthermore added value by visualising the interventions to the patient. Patients were interviewed after the consultation to evaluate how they perceived the tool and whether they felt involved in the decision making regarding their treatment and deprescribing.

What has been achieved?
A manageable and operationalisable tool for the physician to get a quick overview of the interventions suggested by the pharmacist. Furthermore, the tool visualises the interventions to the patient and supports the process of shared decision making during the consultation.

What next?
At our hospital we have clinical pharmacists making medication reviews at several different wards. The next step is to distribute the tool to pharmacists at other wards to strengthen the interdisciplinary collaboration and ensure the largest profit of the pharmacist’s medication reviews. We are also working on developing a similar tool to categorise found side effects to help the physician when deprescribing.

Keywords | Medication review.
Conflict of interest | I have no potential conflict of interest to disclose.

SIMULATION CURVES MAY HELP TO ASSESS ANTIBIOTIC ORALISATION PROCEDURES

Authors: Andreas von Ameln-Mayerhofer, Martin Breuling, Ina Geist

What was done?
In order to achieve an improvement in antimicrobial prescribings, we have addressed possible problems regarding oralisation of antibiotics. For this purpose, we graphically compared the simulated efficacy levels of parenteral and oral forms of beta-lactams.

Why was it done?
In the context of antibiotic stewardship, rapid oralisation of a parenteral antibiotic is recommended in many antibiotic stewardship guidelines. Such a sequence therapy is easy to implement if both application pathways lead to comparable efficacy levels at the site of infection. However, this does not apply to all anti-infectives, in particular some beta-lactam antibiotics represent a challenge in therapy. Additionally, the information about this topic is very sparse in the literature.

How was it done?
We programmed a computer based procedure that allows a simulation of plasma levels of antibiotics upon intravenous versus oral administration. Based on the obtained data and EUCAST-based MIC-distributions for a set of bacteria, we assessed the respective putative clinical actions.

What has been achieved?
Our simulations show that some oral beta-lactams do not reach the PK/PD condition of a sufficient therapy (fT>MHK) in the approved dosage. The simulations have been used for education seminars with physicians and partly led to an improvement in oralisation procedures. Additionally, an oralisation standard has been established.

What next?
Our next step is to develop a special prescription form for oral antibiotics which will enable us to control prescription behaviour even more effectively. We plan to monitor the prescription habits for anti-infectives more closely before and after establishing the prescription form.

Keywords | Antimicrobial stewardship, J01 - antibacterials for systemic use, pharmacokinetic.
Conflict of interest | I have no potential conflict of interest to disclose.
GOOD PRACTICE INITIATIVES

VANCOMYCIN CONTINUOUS INFUSION FOR PATIENTS ON ICU

Author: Marie Keane

What was done?
A protocol for the administration of vancomycin by continuous infusion was developed for patients on ICU, replacing the previous method of giving vancomycin by intermittent dosing: this was developed in consultation with the Anaesthetics and Microbiology Departments.

Why was it done?
In the ICU there was a lot of misunderstanding around the administration of vancomycin by intermittent dosing, particularly around the timing of pre-dose vancomycin levels and appropriate dose adjustment. It could take several days for a patient to reach the therapeutic range of vancomycin.

How was it done?
To develop a vancomycin continuous infusion dosing schedule for patients admitted to ICU, through a review of the available literature and with reference to vancomycin continuous infusion protocols already established on ICUs in other hospitals. A proposal for administration of vancomycin continuous infusion needs to be included on the electronic clinical information system currently in use in the ICU. An IV drug monograph for vancomycin by continuous infusion will be included in the ‘Intravenous Medication Infusion Guidelines’; this will provide information on compatibility with other infusions if required. To recommend vancomycin continuous infusion in patients as agreed with the Anaesthetics and Microbiology Consultants at the daily ward review, this would require the patient to have a dedicated IV line.

What has been achieved?
A finalised version of the Vancomycin Continuous Infusion protocol has been developed in consultation with Anaesthetic and Microbiology Consultants. We have included additional information for patients on CRRT (continuous renal replacement therapy) that has been used in some patients on continuous vancomycin infusion. A standardised prescription for infusion of vancomycin is available on the electronic prescribing system. Vancomycin continuous infusion is now recommended for any patients requiring vancomycin therapy on the ICU.

What next?
We would propose to audit the number of patients on Vancomycin Continuous Infusion in the ICU, including time taken to reach therapeutic range, frequency of sampling and any other cost-saving initiatives perceived.

Keywords | J01 - antibacterials for systemic use, antimicrobial prescribing, intensive & critical care.
Conflict of interest | I have no potential conflict of interest to disclose.

CAN THE CLINICAL PHARMACIST INCREASE HOSPITAL STAYS’ PRICING?

Authors: Thibault Stala, Niels Martignene, Céline Monchy, Anne-Laure Lefebvre, Geoffrey Strobbe, Ali Hammond, Frédéric Feutry, Malgorzata Cucchi, Guillaume Marliot

What was done?
This work involves evaluating the ability of the clinical pharmacist to detect comorbidities related to certain treatments.

Why was it done?
In France, hospitalisations’ reimbursement is linked to care severity. In this context, health care must be as comprehensive as possible on the comorbidities’ registration. As part of prescription validation, the clinical pharmacist can easily highlight comorbidities associated with specific treatments, in order to improve their codification and consequently to better valorise hospital stays.

How was it done?
Six comorbidities, associated with the prescription of specific therapies, were chosen: - Dyskalaemia (potassium or polystyrene sulfonate prescriptions); - Neuropathic pain (NP) or anxiodepressive disorder (ADP) (amitriptylaine, anafanril, pregabalin, gabapentin, duloxetine or capsacin prescriptions); - Iron deficiency anaemia (IDA) (injectable iron prescriptions); - Hypovolaemia (HV) (ringer Lactate, serum albumin or gelatin prescriptions); - Hypercalcemia (HC) (bisphosphonate and/or calcitonin prescriptions); - Severe infection (Inf) (linezolid, daptomycin, teicoplanin, aztreonam and carbapenem prescriptions). Retrospectively, all stays ending between 01/01/2019 and 31/03/2019, and containing at least one prescription of the previously mentioned therapies, were considered. Then, the medical records were analysed to verify the presence of the comorbidity corresponding to the prescribed drug(s). The coding was checked, otherwise, the comorbidity was added. Finally, the revaluation of the stays’ cost has been estimated.

What has been achieved?
The number of stays by suspected comorbidity, based on prescribed treatments, is: - 175 dyskalaemia; - 231 NP or ADP; - 155 IDA; - 124 hypovolaemia; - 41 hypercalcemia; - 16 severe infection hypovolaemia and severe infection were quickly set apart because of the difficulty to confirm these comorbidities with the only retrospective medical record information. No stay with IDA or hypercalcemia has been revalorised. The price of a single stay with dyskalaemia has been increased, by €530. However, NP or ADP has increased the cost of 6 to 13 stays, resulting in a total revaluation of €6000 to €11,000.

What next?
The stays’ remuneration is the hospitals’ main source of income. This work makes it possible to quickly determine if the clinical pharmacist can bring added value in the field of hospital stays’ pricing. The next step is the transition to forward looking. It would also be possible to assess other comorbidities.

Keywords | Impact clinical pharmacy, budget impact, cost control.
Conflict of interest | I have no potential conflict of interest to disclose.

BIOSIMILARS: LET’S START RUNNING

Authors: Beatriz Zurita Alonso, Marta Martí Navarro, Monica Estelrich, Alejandro Ballestero Corominas, Anna Badell Giralt, Diana Patricia Vera Rodríguez, Milagros Riche Salcedo, Roxana Rubio Vargas

What was done?
The pharmacy service led the creation of a working group formed by rheumatologists, gastroenterologists, dermatologists and pharmacists to promote the use of biosimilar drugs in our hospital.

Why was it done?
The use of biosimilar drugs has been a breakthrough to improve the sustainability of the health system. Although since 2015 position papers have been published by some scientific societies, there is no clear consensus about the recommendation for a
GOOD PRACTICE INITIATIVES

switch from the original drug to its biosimilar. The rate of biosimilar use in our country is one of the lowest in Europe.

How was it done?
The working group wrote a consensus document in which it was jointly decided to start all new biological treatments with biosimilars. In addition, it was decided that the prescribers would determine which patients were candidates for switch to a biosimilar based on clinical criteria. If the drug is administered subcutaneously, the pharmacist is responsible to explain the reason for the change and the management of the new device to the patient. In case of disagreement, the original is kept and communicated to the prescribing physician. If the drug is administered intravenously, it is the physician who informs the patient about the change.

What has been achieved?
From May 2019 to September 2019, 17 switches were made: 4 infliximab (66.7%), 9 adalimumab (10.1%) and 4 rituximab (20.0%). This measure led to an economic saving of €111,106.96 per year. Twenty new treatments with biosimilars were started: 1 with etanercept, 2 with infliximab, and 17 with adalimumab. This supposed an economic saving of €141,826.36/year if we compare with the cost of the original drug. The rate of anti-TNF biosimilars increased from 33% to 48% in 5 months. None of the patients refused the use of a biosimilar. By now, all treatments maintain their effectiveness without safety issues. This optimisation of treatments will allow the hospital to treat a greater number of patients and invest in innovative treatments.

What next?
These results indicate a great opportunity to offer biological treatment to a higher number of patients every year. Therefore, our objective is to achieve the switch of remaining patients as it could generate an additional saving of €630,072.28 per year.

Keywords | Drug and therapeutic committee, optimisation of therapy, cost saving.
Conflict of interest | I have no potential conflict of interest to disclose.

OPTIMISING WORKFLOW AND MEDICATION IN THE ACUTE WARD – BETTER USE OF PHARMACISTS’ SKILLS

Authors: Mia P von Hallas, Trine RH Andersen

What was done?
Through user surveys among the physicians in the Acute Ward, pharmacist tasks were adjusted to benefit the physician’s high work flow. Before the survey, pharmacists performed medication reviews which were communicated to the physician. The adjusted pharmacist tasks on the ward includes medication history, reconciliation and transfer of the medication to the electronic medicine module (Epic), securing up-to-date medicine data during hospitalisation.

Why was it done?
Physicians in acute wards have limited time to see all patients. Time for medication history, reconciliation and review is limited, due to great patient turnover. The physicians did not consider the pharmacist medication review alone as a contribution to the workflow or to relieve the high workload.

How was it done?
A questionnaire was developed regarding four areas (Pharmacist competencies, Pharmacist tasks, Pharmacist medication review, Multidisciplinary teamwork) and distributed among the physicians. Based on the anonymous responses, the pharmacists adjusted their tasks to include medication history, medication reconciliation and transfer of medication to Epic, complying with the suggestions in the questionnaire survey. Obstacles were low percentage of respondents (15/33 (45%) prior to the initiative and 12/39 (31%) after), and the large replacement of junior physicians in the period between surveys.

What has been achieved?
Physicians feel more part of the multidisciplinary team and attitudes towards the pharmacist service among physicians has changed. A new survey after implementation of the new workflow showed that 73% found medication reconciliation was a pharmacist task, compared to 29% before. After implementation, 90% of physicians believed that pharmacists could do medication review (67% before intervention). The acknowledgement that pharmacists were able to transfer medication to Epic was increased from 20% to 90%. The attitude has changed from considering pharmacists as medication advisers to considering pharmacists as part of the multidisciplinary team in the ward.

What next?
The questionnaire survey will be repeated annually to continually improve the workflow and contribution of clinical pharmacist services to the healthcare professional team in the acute ward.

Keywords | Clinical pharmacy services, medication reconciliation, multidisciplinary team.
Conflict of interest | I have no potential conflict of interest to disclose.

ROUTE TO CLINICAL PHARMACY: THE EXCHANGE PROGRAMME EXPERIENCE

Authors: Chiara Inserra, Antonio Solinas, Chiara Pancirolli, Branden Nemecek, David Zimmerman, J.Douglas Bricker Piera Polidori

What was done?
Successful implementation of clinical pharmacy services are associated with improved prescribing practices. SIFO includes clinical pharmacy in their mission to line up with Section 4 of the European Statement on Hospital Pharmacy and is striving for implementation through advanced trainings for IHPs. The aim of this EP was to provide real world clinical pharmacy training to IHPs.

How was it done?
The clinical training was created by Duquesne University to provide IHPs educational and first-hand clinical skills based on American clinical pharmacy practice and education. The training was individualised for IHPs’ interests including didactics and practical training. Sessions to discuss IHPs’ progress were conducted with the Dean and faculty of the programme.

What has been achieved?
IHPs had the chance to observe American pharmacy education and compare it to the Italian one. American university training was practical, well-coordinated with clinical activities, and based on a trustful teacher-student relationship. During practical training IHPs
shadowed American Clinical Pharmacists (ACP) specialized in different areas: Infectious Disease, Cardiology, Oncology, Emergency Medicine, Internal Medicine, Community Pharmacy, Ambulatory Care. They were able to observe how ACPs validate prescriptions and are actively engaged in direct patient care, participating in bedside multidisciplinary rounds and making recommendations on therapies (drug interactions, dose adjustments, antibiotic selection). IHPs saw how technology investments, prioritisation of care, and availability of skilled personnel underlie American hospital pharmacy practice.

What next?
IHPs gained baseline clinical pharmacy skills to enhance care at their facilities; however, the widespread implementation of clinical pharmacy in Italy requires education reform, enhanced resources and integration of pharmacists within a multidisciplinary team. Implementation of small projects through collaboration with universities should be considered in the Italian hospital setting.

Keywords | Clinical pharmacy services, hospital pharmacy competencies, hospital pharmacy education

Conflict of interest | I have no potential conflict of interest to disclose.

DESIGN OF AN ANTI-HAEMORRHAGIC AGENTS PROTOCOL FOR AN INTENSIVE CARE UNIT

Authors: Mercedes Gómez-Delgado, Marta Valera-Rubio, Margarita Carballo-Ruiz, José Luis Ortiz-Latorre, Isabel Moya-Cammona

What was done?
To define an emergency procedure that ensures correct management in cases of massive bleeding in an intensive care unit (ICU).

Why was it done?
Blood coagulation factors and their adequate use can be of particular importance in the treatment of massive haemorrhage, especially in the ICU. This initiative was taken in order to improve uptake and to avoid errors in the administration, which can be difficult in emergency situations.

How was it done?
The development of drug use protocols for emergency situations is a simple task that facilitates health workers to manage them. Prioritising the drugs to be included in a protocol by a previous survey in a multidisciplinary setting is important to consider the different points of view. We carried out a review of the pharmacy service to the ICU needs of antihaemorrhagic drugs. ICU staff (doctors and nurses) were informed to reach an agreement about eligible drugs for being included in the protocol. ICU staff requested the inclusion of four drugs in the protocol according to the prevalence of use and the difficulty of administration: human fibrinogen, tranexamic acid, eptacog alfa and human prothrombin complex. We created a protocol with four information sheets, one of each drug, made of schematic information about: 1. Physical location (fridge or room temperature, number of shelf) and minimum safety stock (3 units of human fibrinogen, 4 units of tranexamic acid and 3 units of human prothrombin complex), 2. Indications and dosage according to the clinical situation and the patient characteristics (dosage adjustment according to renal or hepatic impairment, weight or age when applicable), 3. Recommendations for intravenous administration (flow rate, bolus, loading dose, dilution, mixture stability).

What has been achieved?
Mapping the information and dividing it into sections is essential for its rapid understanding in a high-stress work environment. The implementation of this protocol was well embraced by all the staff involved, since it allowed a more efficient health care circuit for the ICU staff. It also optimises the consumption of this type of more monitored drugs.

What next?
We will monitor the compliance with this protocol, as well as possible updates that may be beneficial for a better understanding of the forms of administration.

Keywords | Medication-use system, shared decision making, ready to use.

Conflict of interest | I have no potential conflict of interest to disclose.

DEVELOPMENT OF GUIDELINES FOR SAFE HANDLING OF ONCOLYTIC VIRUSES

Authors: Faten Ahmad Díaz, Eugenia Serramontmany Morante, Carla Esteban Sánchez, Pablo Latorre García, Montserrat Carreres-Prieto, Javier Martínez Casanova

What was done?
Development of a standardised working procedure for the safe handling considerations, storage requirements, and modes of administration of oncolytic viruses (OV) in patients with cancer.

Why was it done?
Different critical points were detected: 1) some OV dose prescription depends on tumor size, 2) special storage conditions, 3) special safety measures related to preparation to prevent cross-contamination and technician exposure, 4) special transport conditions in a safety container, and 5) safe administration. The increasing number of clinical trials with OV combined with the identified critical points implies a better coordination between the different departments involved.

How was it done?
Different meetings were arranged with a multidisciplinary team to standardise procedures, in order to avoid errors: 1. The pharmacist validates the prescription volume reflected on the certified sheet according to the tumour size. Then, a pharmacy technician is authorised to remove the vials from the freezer to start the preparation. 2. Special −80°C freezer is needed to preserve the OV. 3. According to the preventive medicine service, OV must be prepared in biological safety cabinet class II (BSC) with personal protective equipment. At the end of preparation, the BSC must be cleaned with the OV appropriate disinfectant and ventilated for 1 hour before restarting to work again. So, the OV preparation was established at 7 a.m. in order to avoid cross-contamination with the chemotherapy (first preparation in the day). 4. Safety transport must be considered, so OV is packaged in a special hermetic box. 5. The majority of the OV preparations are administered intralesionally at the radiology room so safe administration is needed to avoid the room contamination.

What has been achieved?
By using these procedures, it is possible to work with a single BSC, avoiding delays in the administration of other therapies while reducing the risk of mistakes.

What next?
These types of therapies represent a novel therapeutic modality: their preparation, administration and handling requirements differ from current therapies; pharmacists have an important role in developing new procedures to incorporate them into clinical practice. This protocol may be useful to other centres due to the lack of experience and standardised guidelines to work with this type of therapy.

Keywords | Multidisciplinary team, oncology pharmacy, cytostatic exposure.

Conflict of interest | I have no potential conflict of interest to disclose.
GOOD PRACTICE INITIATIVES

DESIGN AND ELABORATION OF AN INTELLIGENT INTRAVENOUS INFUSION PUMPS GUIDE FOR THE INTENSIVE CARE UNIT

Authors: Marta Valera-Rubio, Maria Isabel Sierra-Torres, Elena Sánchez-Yañez, José Luis Ortiz-Latorre, Isabel Moya-Carmona

What was done?
We developed an updated guide on intravenous drug administration including infusion parameters for intelligent intravenous infusion pumps, so-called ‘IV smart pumps’, used in the intensive care unit (ICU).

Why was it done?
Critically ill patients often require the administration of several intravenous drugs and that includes infusion pumps. New infusion pumps offer the ability to build a drug library within the infusion system itself. This allows intravenous infusion medication safety to be improved. Because of that, it is highly important to have an updated administration guide and an IV smart pumps library for the everyday clinical practice. This guide was developed in order to help ICU staff to practice safe prescribing and managing of medicines and to reduce the incidence of adverse drug events and administration errors.

How was it done?
A database with the most important intravenous drugs was created by a multidisciplinary working team (pharmacists, physicians and nurses). The drugs included were divided into therapeutic groups and were distributed among the participating members for the drug information review process. The therapeutics groups included were: sedatives, analgesics, antihypertensives, vasopressors, anti-arrhythmics and others such as insulin, heparin, etc. For each drug, a bibliographic research was conducted, gathering information from manufacturers, intravenous drugs databases (Uptodate®, Micromedex®, Stabilis®) and other hospital guidelines. The data collected included: drug name, lower and upper hard limit, default dilution, flow rate, default rate, rate upper soft and hard limit, bolus default, flow rate and volume upper limit, loading dose, duration, dilution volume, default, and lower and upper hard limit.

What has been achieved?
This guideline promotes, mainly, the safe use of drugs usually administered in critically ill patients, and is available for all the staff in this unit. Its elaboration has made it possible to avoid medication errors and to establish a narrower bound between the pharmacy service and the critical care unit, developing new partnerships which could lead to new projects.

What next?
We are still working on improving this guide, making it easier to understand and with a unified vocabulary. We will update it periodically in order to include new evidence and new drugs if necessary.

Keywords | Injection, drug safety, ICU.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPLEMENTATION OF AN ASSISTED ELECTRONIC PRESCRIPTION SYSTEM IN A CRITICAL CARE UNIT

Authors: Marta Valera-Rubio, Rosario Mora-Santiago, Maria Isabel Sierra-Torres, Jose Luis Ortiz-Latorre, Isabel Moya-Carmona

What was done?
The intensive care unit (ICU) used a computerised physician order entry system different from all the hospital units. The pharmacy service, along with the ICU physicians and nurses, have tried to adapt the special features of this unit to integrate it with the clinical decision prescription system that is official in the hospital.

Why was it done?
The existence of different prescription systems could lead to validation errors when the pharmacist responsible for the ICU is not available. Furthermore, ICU physicians could not benefit from all the advantages that the official prescription system included. The presence of a common integrated prescription system among all units allow the exchange of prescription drug information between the ICU and the rest of the units, in accord with the health situation of the patient. Moreover, with this new system they can have access to allergies, renal adjustment doses, recommended posologies, therapeutic exchanges, and pharmacy validation, among other items.

How was it done?
A multidisciplinary team formed by ICU staff (doctors and nurses) and pharmacists met to discuss the points that should be followed when implementing the new electronic prescription programme. In these working meetings, especially with physicians, we tried to agree on what and how the infusion protocols would be included in the new system, based on the infusion pumps guides made by both units. A pilot phase was established by the end of July 2019 to detect possible errors in the process of prescription, and mostly, when a patient changed from two units, from the ICU to another health care service and vice versa. All errors or discordances found were discussed between the pharmacist and the physician or the nurse, and in order to solve them we contacted the managers of the prescription system or we modified the parameters that are included in the system such as names of drugs, dosage guidelines, nurses’ orders, etc.

What has been achieved?
The implementation of this new system has been well embraced by the staff, since it allowed a more efficient and secure health care circuit for the patients. All physicians are now able to use this system while the other one is no longer used.

What next?
We will continue making formative sessions with both physicians and nurses, in order to solve all the doubts that can appear during the training period. We will update periodically the available data and make improvements in the programme configuration.

Keywords | Computer assisted prescribing (CPOE), drug safety, ICU.
Conflict of interest | I have no potential conflict of interest to disclose.

PHARMACEUTICAL INTERVENTIONS IN PARENTERAL NUTRITION: METHODOLOGY AND RESULTS

Authors: Teresa Cabeças, Sara Franco, Rita Oliveira, Maria Pereira

What was done?
Definition and implementation of action methodology, in a form of flow chart, for patients in need of parenteral nutrition (PN).

Why was it done?
PN is an alternative or complement in patients whose oral and/or enteral nutritional intake is inadequate/unsafe or whenever the digestive tract is not functioning or this route is contraindicated. Success in choosing the most appropriate PN depends on a specialised multidisciplinary team that can provide nutritional support that results in improved clinical outcomes and patient safety. With the decision flowchart (designed in January 2019), the hospital clinical pharmacist intervenes in the calculation of the patient’s nutritional needs and, consequently, in the counselling of the most appropriate PN bag and clinical and biochemical monitoring of the patient.
GOOD PRACTICE INITIATIVES

How was it done?
Implementation of the following therapeutic decision methodology: 1. Validation of parenteral support nutritional option according to decision flowchart; 2. Filling out a patient’s nutritional needs spreadsheet – anthropometric assessment; biochemical data; calculation of protein requirements; calculation of non-protein energy needs; calculation of total energy requirements; choosing the appropriate volume; validation of the route of administration; 3. Selection of the most suitable PN bag from the Hospital Formulary (preferably after ionic corrections); 4. PN bag suggestion to the prescribing physician; 5. Acceptance and alteration (or not) by the prescribing physician; 6. Clinical and biochemical monitoring of the patient; 7. Optimisation of nutritional therapy when applicable.

What has been achieved?
From January to August 2019 the Pharmaceutical Services intervened in all 21 PN prescriptions. In this universe, 15 were in the context of gastroenterology surgery, 5 due to infection and 1 due to non-gastrointestinal cancer disease. The intervention was not accepted in only 5 cases.

What next?
Clinical pharmacists play a key role in supporting the prescription of PN. The future is challenging, particularly in assessing patients’ outcomes and quality of life, as well as the economic and financial dimension. It will also be essential to create a Clinical Nutrition Commission that covers PN, enteral and oral feeding.

Keywords | Revised decision making.
Conflict of interest | I have no potential conflict of interest to disclose.

CENTRALISED ONLINE REGISTRY FOR PATIENT WITH METASTATIC COLORECTAL CANCER TREATED WITH REGORAFENIB

Authors: Vanesa Alonso Castro, Beatriz López Centeno, Daniele Alioto, Angela Gil Martín, Ignacio Martín Casasempere, Maria Segura Bedmar, Ainhoa Aranguren Oyarzabal, María Jose Calvo Alcántara

What was done?
To describe the implementation of a centralised registry (CR) for all patients with metastatic colorectal cancer (mCRC) being treated with regorafenib in a Regional Health Service (RHS).

Why was it done?
The European Society for Medical Oncology (ESMO) has developed the ESMO-Magnitude of Clinical Benefit Scale (ESMO-MCBS) to assess the magnitude of clinical benefit for cancer medicines. In the CORRECT trial, regorafenib has an ESMO-MCBS score of 1 (questionable benefit). It is necessary to assess the effectiveness and safety of regorafenib treatment in real clinical practice.

How was it done?
A working team including oncologists, hospital pharmacists and RHS professionals developed the CR for patients with mCRC starting treatment with regorafenib in 2019. The variables selected were: age, sex, ECOG, primary tumour location, number of metastatic sites, presence of liver or brain metastases, RAS-mutation status, BRAF-mutation status, previous lines, follow-up variables (dose, type of response and adverse events), date and reason for withdrawal.

What has been achieved?
The CR is available for all professionals in the RHS in April 2019 and it is compulsory to include all patients starting treatment in 2019. Forty-nine patients were included (59.2% males). The median age was 68 years. The baseline characteristics of the patients were:

- 36.7% and 63.3% of patients had ECOG 0 and 1 respectively;
- 79.4% had the primary tumour in the left colon; – 36.7% had 3 or more metastatic sites; – 71.4% and 2.0% had liver and brain metastases respectively; – RAS gene was mutated in 57.1% of patients and undetermined in 2.0%; – BRAF gene was mutated in 4.1% of the patients and undetermined in 34.7%; – in 65.3% of patients regorafenib was the fourth line or later therapy. With median treatment duration of 2.5 months, 42.9% of patients had discontinued treatment; 30.6% had progressive disease, 8.2% had adverse events and 4.1% had died.

What next?
The experience obtained with this registry has allowed us to know the use profile of this drug in all hospitals of RHS. A comprehensive assessment of the collected data and a longer follow-up period are necessary to assess the effectiveness and safety of regorafenib treatment in real clinical practice.

Keywords | Drug therapy outcomes.
Conflict of interest | I have no potential conflict of interest to disclose.

ONCOLOGY PHARMACISTS: EXPANDING OUTPATIENT SERVICE MODELS TO INCREASE PATIENT IMPACT AND SAFETY

Authors: Paul Firman, Karen Whitfield, Therese Hayes

What was done?
The oncology pharmacy team in a tertiary referral hospital with the assistance of activity-based funding commenced an outpatient clinic allowing patients an opportunity for medication reviews, appropriate counselling of oral chemotherapy and discussion of medication side effects which was a gap within the current service.

Why was it done?
The provision of outpatient oncology services by pharmacists is still limited, but this role is an emerging one. There is limited literature to date that suggests that pharmacists can add value while satisfying the needs of patients with cancer, addressing medication use and symptoms, and potentially generating revenue for the practice. The value that clinical pharmacists can bring to outpatient clinics other than oncology clinics has been highlighted extensively, providing added weight to the argument for incorporating these professionals into the cancer care model.

How was it done?
In consultation with pharmacy, medical, nursing and administrative staff a working party was formed to establish the outpatient pharmacy clinic. Factors including patient cohort, appointment scheduling, clinic room availability, referral methods, and key performance indicators were discussed. The group met monthly to discuss the progression of the clinic and any barriers.

What has been achieved?
Over the first 3 months (January – March 2019) 215 patients on an average of 7.5 medications were reviewed. Within the cohort 57% of the patients were taking high risk medications (known as PINCHA medications) and 37% received counselling on new medications. There were 37 medication interventions mostly involving drug–drug interactions and medication optimisation. For succession planning, pharmacist training has also occurred.

What next?
Outpatient oncology practice is a growing area of opportunity for pharmacists to provide clinical services as part of a multidisciplinary team. This is of benefit both to the multidisciplinary team and the patient, ensuring the best possible outcomes. With the growing complexity of oncology treatments, the pharmacist’s role is vital...
to ensure quality use of medicines, safety and patient centred care. Training is currently being undertaken to expand the role and to ensure continuity of the service.

Keywords | Clinical pharmacy services, patient education, multidisciplinary team.

Conflict of interest | I have no potential conflict of interest to disclose.

IMPACT OF PLANTS ON ANTICANCER DRUG METABOLISM: DEVELOPMENT OF A DATABASE TO FACILITATE THE PHARMACIST’S EXPERTISE

Authors: Anais Amar, Simon Clautrier, Morgane Giovanelli, Regine Chevrier

What was done?
Centralise information on plant metabolism on a single support by creating a database. Facilitate pharmacist's expertise about interactions between plants and anticancer drugs.

Why was it done?
The phytotherapy market has continued to grow for several years. However, in oncology, concomitant use of plants with oral or injectable chemotherapies can be harmful. Plants can interact with many cytochromes (CYP), impacting on the biotransformation and kinetics of drugs. While grapefruit or St John's wort are already recognised as interfering with many therapies, the impact of many plants remains unknown for healthcare professionals. Tools exist to evaluate their effects on drug metabolism, but the multiplication of sources delays and complicates the advice of pharmacists.

How was it done?
To create the database, it was necessary to establish an exhaustive list of plants. Three sources of information have been used:

- Inventory of phytotherapy products marketed in 4 drugstores
- Census of plants consumed by patients seen in pharmaceutical consultation (PC)
- Consultation of websites specialized in phytotherapy

Then, an Excel table has been developed:

- Each line corresponds to a plant
- Each column corresponds respectively to 17 CYP, a transport protein (Pgp), estrogen-like (EL) and antioxidant (AO) properties of the plant.

A colour code has been defined according to the inhibitory (yellow), inductive (blue), EL (purple) and AO (red) action of the plant. If there is no interaction, the box remains blank.

Plant effects data were collected from Hedrine®, Oncolien®, MSKCC, RX list and Drugs.com websites.

What has been achieved?
Finally, 174 plants have been accounted in drugstores, 82 were identified during PC and 129 found on websites. If 10% of plants have an EL action and 16% an AO effect, approximately 30% have inductive and/or inhibitory action of at least one CYP and/or Pgp. Since the tool’s creation: 91% of answers could be given immediately to patients compared to only 9% delayed (plants still unreferenced).

What next?
This database is an essential tool for answering questions from patients with anticancer drugs. It saves precious time and responsiveness during PC, but also during patient phone calls. However, critical work with divergent information between sources is to be expected. Currently, as a precaution, we don’t recommend the use of plants subject to such a contradiction.

Keywords | Patient counselling, databases, drug-food interaction.

Conflict of interest | I have no potential conflict of interest to disclose.

DEFINING DOSAGE REGIMENS OF ERLOTINIB AND GEFTINIB IN NON-SMALL CELL LUNG CANCER PATIENTS USING MODELLING AND SIMULATION

Authors: Sofia Konstantinidou, Vangelis Karalis

What was done?
Population pharmacokinetic (PK) – pharmacodynamic (PD) modelling was utilised to simulate erlotinib and gefitinib dosage regimens for non-small cell lung cancer. In silico clinical trials with virtual patients, of several resistance levels, were simulated in order to optimise pharmacotherapy and get better therapeutic outcomes.

Why was it done?
Tyrosine kinase inhibitors (TKIs), like erlotinib and gefitinib, are widely used in anticancer therapy. However, after long term administration of TKIs, resistance is observed in the majority of patients. Thus, it is necessary to be able to define individualised dosage regimens for TKIs in cancer patients. Nowadays, modelling and simulation approaches represent the most powerful tool in the hands of clinical pharmacists towards precision medicine.

How was it done?
The utilised PK/PD model and average parameter values were obtained from the study of Eggemann and colleagues. This model was fully validated using statistical criteria and goodness of fit plots. In order to simulate many possible conditions that may occur in clinical practice, several different values of erlotinib and gefitinib clearance, absorption rate, pharmacodynamic characteristics (like tumor volume), and resistance were assessed. In addition, several dosage schemes were simulated. The entire modelling work was performed in Monolix® 2019R1.

What has been achieved?
Concentration vs. time and effect vs. time plots for the virtual patients were simulated for a variety of conditions and tumour resistance levels. For both TKIs, decrease of body clearance led to higher plasma concentrations, as well as more intense and longer duration of the effect (i.e. tumour volume shrinkage). Enhanced drug effect on resistant cells resulted in a decrease in tumour volume. In addition, a variety of concentration-time profiles were simulated, making it possible to choose the best regimen for each patient.

What next?
In this study, the use of modelling techniques led to the simulation of many conditions of patients and adjustment of dosage regimens according to their needs. Wider application of in silico methods using virtual patients will allow the design of the most appropriate individualised dosage schemes tailored to the patients’ requirements.

Keywords | Clinical pharmacy services, optimisation of therapy, safety profile.

Conflict of interest | I have no potential conflict of interest to disclose.

SECTION 5: PATIENT SAFETY AND QUALITY ASSURANCE

**PARENTERAL NUTRITION: HOW TO PREVENT THE NEXT MISTAKE

Author: Saif Salah

What was done?
Recognise the mismatch between the electronic health record (EHR) instructions for delivery of parenteral nutrition (PN), against the actual delivery by the pharmacy according to prescription from PN staff and characterisation of these cases in terms of mismatching.
GOOD PRACTICE INITIATIVES

Why was it done?
In Carmel Medical Center, the infusion pack is delivered by a pharmacist to the prescription given from PN staff, and afterwards the infusion instructions are recorded by one of the department physicians in the patient EHR. Recently there have been several mistakes that have been reported, which made it urgent to check matching between PN staff decision and the record of instructions in the EHR.

How was it done?
Issuing a report of the PN doses delivered by the electronic system called "UNIT-DOSE" in the pharmacy according to the name of patient and days of treatment of 2018 vs. electronic instructions that have been recorded by one of the department physicians in the "Kamelyon" system or "Meta Vision ". The parameters examined were: type of solution, composition, volume, supplements-additives (electrolytes, vitamins, trace elements), infusion rate and method of infusion (central / peripheral). Infusion rate was examined separately as a follow-up by a nutritionist.

What has been achieved?
From our research, we found a significant difference between computerised recording of PN instructions and what the patient actually received. This is due to the separation between the hand-written prescription by the PN staff and the computerised instruction recording by the treatment team. This may constitute a danger to patients.

What next?
Examination and follow-up by the pharmacist is important for identifying and treating errors of this nature appropriately. Guidance sessions for the treating staff should be conducted in the different departments. The prescription must be matched by the PN staff to the computerised instruction by placing a prescription pattern. Set up protocols in the computerised system that guide the treatment staff in the department to record the correct instructions.

Keywords | Error-avoiding strategies.
Conflict of interest | I have no potential conflict of interest to disclose.

THE IMPACT OF AN ELECTRONIC ALERT IN PREVENTING DUPLICATE ANTICOAGULANT PRESCRIBING

Authors: Alison Brown, Gillian Cavell, Nikita Dogra, Cate Whittlesea

What was done?
A ‘duplicate anticoagulant alert’ (Anticoagulant MLM) was implemented within our electronic prescribing system (EPMA) to alert prescribers if co-prescription of two or more anticoagulants was attempted, with the intention of preventing the completion of a potentially harmful prescription. We conducted a retrospective review of the impact of the Anticoagulant MLM on preventing co-prescription of low-molecular weight heparin (LMWH) and direct oral anticoagulants (DOACS).

Why was it done?
Anticoagulants are high-risk drugs. An NHS England Patient Safety Alert was published in 2015 highlighting harm from inappropriate co-prescription of anticoagulants.

How was it done?
The study took place in a 950 bed UK acute teaching hospital. A report of all Anticoagulant MLM alerts generated for adult inpatients between 26th June 2017 and 8th October 2018 was extracted from EPMA. Data on drugs prescribed, alert acceptance or override and duplicate anticoagulant administration were collected. Where alerts were overridden, appropriateness of the override was assessed by an anticoagulation specialist pharmacist. Ethics approval was not needed.

What has been achieved?
The Anticoagulant MLM triggered on 894 occasions; 113 in response to attempted prescription of a LMWH for a patient already prescribed a DOAC. 65 of 113 alerts were overridden (duplicate prescription completed). 48 alerts were accepted (duplicate prescription avoided). Of the 65 overridden alerts, consecutive doses of both anticoagulants were scheduled appropriately. No duplicate prescriptions were administered in 44 cases (44/65, 67.7%). 15 duplicate prescriptions were either cancelled before administration or not administered concurrently (15/65, 23.1%). Duplicate doses were administered against 6 prescriptions (6/65, 9.2%), on 3 occasions. No patient harm was identified. The alert prevented inappropriate co-prescription of anticoagulants to 48 patients. Overrides were justified in 44 cases. Anticoagulants were correctly prescribed for 92/113 (81.4%) patients. It was outside the scope of this project to investigate why alerts were overridden. Alert fatigue and alert frequency are recognised factors limiting the effectiveness of electronic alerts in changing a planned course of action.

What next?
The alert remains in place as a barrier to error. Further work is needed to identify reasons for anticoagulant alert overrides.

Keywords | Prescription appropriateness, electronic prescribing system, error-avoiding strategies.
Conflict of interest | I have no potential conflict of interest to disclose.

VENOUS THROMBOEMBOLISM PREVENTION MEASURES FOR WOMEN IN PREGNANCY AND THE Puerperium

Authors: Sheena Patel, Sima Purohit, Jennifer Hanna

What was done?
Venous thromboembolism (VTE) prevention measures introduced and embedded for women in pregnancy and the puerperium, with an aim to reduce potentially preventable hospital-associated events.

Why was it done?
• VTE remains the leading cause of direct maternal death, with no evidence of a consistent decrease in mortality over the past 20 years. • Alongside changes in national guidelines, the maternity population and interventions are changing e.g. women giving birth are now older with more risk factors for thrombosis e.g. obesity. More interventions e.g. caesarean section are undertaken placing women at higher risk of VTE. • VTE prevention measures were introduced in 2010, and nearly 10 years on further changes were implemented to reduce mortality and morbidity.

How was it done?
• Electronic VTE risk assessment introduced with mandatory alerts at relevant time-points e.g. at booking, on admission, post-delivery. • Simplification of the national VTE risk scoring system to ensure accurate completion of assessment and user-ability. • Clear hospital guidance on VTE prevention for pregnant women, including a pocket guide covering risk assessment and thromboprophylaxis. • Staff education on mechanical thromboprophylaxis for correct use and monitoring to avoid adverse effects. • VTE patient information leaflet covering signs and symptoms of VTE and when to seek urgent medical attention. • Introduction of a ‘mum and baby’ App with information during pregnancy and postpartum. • Root cause analysis performed on hospital associated VTE events, with shared learning of root causes and actions
prevent recurrence to multidisciplinary teams. • VTE education introduced in medical, midwifery and pharmacy staff training programmes, with regular updates in the maternity risk newsletter.

What has been achieved?
• Over 95% of women with VTE risk assessments on admission, with weekly and monthly performance reports for local monitoring. • Pharmacy staff perform quarterly audits on appropriate thromboprophylaxis; 97% inpatients received pharmacological thromboprophylaxis, and 88% inpatients were wearing anti-embolism stockings. • Pre-printed VTE management plan in maternity documentation to assist with transfer of care. • Development of an ‘app’ to provide patient information. • Patients counselled on anticoagulant therapy to support medication compliance. • VTE education embedded in training programmes. • VTE ward rounds for ongoing stewardship.

What next?
• Staff engagement to embed VTE prevention measures in practice. • Increasing patient education on VTE prevention. • Robust and sustainable interventions improving patient outcomes.

Keywords | Quality improvement, risk assessment, antithrombotic therapy.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPLEMENTATION OF A MEDICATION SAFETY AGENDA AT TWO HOSPITAL SITES IN RESPONSE TO WORLD HEALTH ORGANISATION (WHO) PATIENT SAFETY CHALLENGE ‘MEDICATION WITHOUT HARM’

Authors: Meenal Patel, Sheena Patel, Peta Longstaff

What was done?
A local medication safety agenda implemented across two hospital sites in response to World Health Organisation (WHO) patient safety challenge ‘Medication without Harm’.

What was it done?
• Initiative introduced and on-going since 2017. • To increase and embed medication safety awareness. • To address under-reporting of medication-related incidents, with feedback. • To embed medication safety in education programmes and clinical practice.

How was it done?
• Medication safety group (MSG) introduced with local strategy, involving junior medical staff for frontline feedback. • Medication safety metrics changed to allow benchmarking with peers as per NHS Improvement’s Model Hospital data. • ‘Plan, Do, Study, Act’ model applied to improve transfer of care from hospital to rehabilitation unit following external incidents. • Monthly analysis of incidents with harm, exploring reasons for under-reporting. • Optimisation of incident reporting system to improve staff feedback following investigations • Near miss error log introduced in pharmacy with shared learning. • Mitigation of medication-related risks e.g. medications safe storage action plan. • Medication safety bulletins, patient safety newsletters and top tips guide introduced covering focal themes. • ‘Safe prescribing’ mandatory induction training for junior doctors to support prescribing of high risk medicines and compliance to patient safety alerts. • Hospital-wide education on lessons learnt from incidents. • Medication safety resources for staff to access. • Nursing quality round on medication safety • Electronic missed doses real-time report developed to tackle omitted/delayed critical medication doses. • Medication safety awareness (MSA) week held to increase awareness on focal themes.

What has been achieved?
• Multidisciplinary MSG with assurance on meeting WHO global challenge. • Monthly analysis of medication safety data to allow learning, collaboration and benchmarking against peers. • Positive staff feedback on bulletins/newsletters with staff involvement/engagement. • Training programmes embedded with safe prescribing education. • Improved hospital safety metrics: Following MSA week, a 5% and 21% increase in medication-related incident reporting occurred at each site which has been sustained. Reporting rates doubled at one site following success of MSA week. • In 2018-19, local target achieved for reported medication-related incidents per 100,000 finished consultant episodes and medication-related incidents with harm.

What next?
• Collaborative multidisciplinary working raising the profile of pharmacists acting as medication safety officers. • Implementing medication safety measures from NHS Patient Safety Strategy 2019. • Initiatives for safer culture, safer systems and safer patients.

Keywords | Education, high risk medication, error-avoiding strategies
Conflict of interest | I have no potential conflict of interest to disclose.

THE IMPACT OF A WARD SATELLITE PHARMACY ON CLINICAL PHARMACY SERVICES AND POTENTIAL COST BENEFIT

Authors: Thewodros Leka, Iun Grayston, Mashal Kamran, Biljana Markovic

What was done?
The Pharmacy department made a successful business case to the Hospital executives to open a Satellite pharmacy to serve 4 surgical wards. The proposal was to recruit a dedicated clinical pharmacist and Medicines Management Technician, and set-up a dispensing satellite pharmacy.

Why was it done?
The Carter report recommended that about 80% of hospital pharmacist time should be spent on the wards to provide clinical pharmacy services. However, in our hospital’s surgical specialty at the time of this report, it was found that only 33% of pharmacist’s time was spent on clinical pharmacy services. This had a negative impact on: • rate of medication errors and near misses; • supply of critical medicines; • pharmacist participation in productive ward rounds; • timely discharge of patients home.

How was it done?
The business case indicated that if funded, the new satellite pharmacy team would: • improve clinical pharmacy key performance indicators; • improve patient safety; • deliver a potential cost benefit. Funding limitation was an obstacle and we have to convince the board.

What has been achieved?
We achieved 60–90% improvement in the objectives set in the business case as illustrated in Table 1 and 2. The pharmacy team won the annual quality improvement award of 2018. Table 1: Clinical Pharmacy Service improvement Clinical pharmacy services Service rate pre-satellite pharmacy Service rate post satellite pharmacy % of service improvement Medication errors 16/month 6/month 63% Pharmacist interventions 20/month 80/month 75% Pharmacist participation in ward round 6/month 50/month 88% Time to dispense discharge summaries 90 minutes/discharge summary 20 minutes/discharge summary 77% Number of patients counselled 15/month 75/month 80% Pharmacist available in the ward 1.5 hrs/day 7.5 hrs/day 80% Time taken to supply critical medicines 1 hour 5 minutes 91% Table 2: Potential Cost-benefit savings achieved Activities Cost-benefit

GOOD PRACTICE INITIATIVES

Indicates GPI award nominee

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost-benefit</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge summaries</td>
<td>90 minutes/discharge summary</td>
<td>20 minutes/discharge summary</td>
</tr>
<tr>
<td>Participation in ward round</td>
<td>6/month</td>
<td>50/month</td>
</tr>
<tr>
<td>Medication errors</td>
<td>16/month</td>
<td>6/month</td>
</tr>
<tr>
<td>Pharmacist interventions</td>
<td>20/month</td>
<td>80/month</td>
</tr>
<tr>
<td>Pharmacist participation in ward round</td>
<td>6/month</td>
<td>50/month</td>
</tr>
<tr>
<td>Time to dispense discharge summaries</td>
<td>90 minutes/discharge summary</td>
<td>20 minutes/discharge summary</td>
</tr>
<tr>
<td>Number of patients counselled</td>
<td>15/month</td>
<td>75/month</td>
</tr>
<tr>
<td>Pharmacist available in the ward</td>
<td>1.5 hrs/day</td>
<td>7.5 hrs/day</td>
</tr>
<tr>
<td>Time taken to supply critical medicines</td>
<td>1 hour 5 minutes</td>
<td>91%</td>
</tr>
</tbody>
</table>
GOOD PRACTICE INITIATIVES

savings/year (6) Reducing length of stay of patients €17,000 Reducing repeat dispensing €16,000 Effective use of nursing time €11,000 Reducing prescribing errors €103,000 Total Savings €147,000.

What next?
- Weekend working. • Service improvements can be transferred to acute medical units and downstream medical wards. Reference Carter report.

Keywords | Interventions, medication error, quality improvement
Conflict of interest | I have no potential conflict of interest to disclose.

SAFE PRESCRIBING METRICS FOR HOSPITAL PHARMACY

Authors: Oran Quinn, Anna Marzec

What was done?
A quality improvement initiative to resolve issues with prescribing medications dosed by weight. Nursing staff were identified as ‘gate-keepers’ who could refuse to administer medication inappropriately prescribed. Identification, agreement, education and feedback were necessary to change prescribing practice and support nursing staff. Hospital doctors were required to calculate and prescribe the total dose to be given. Feedback was given by monthly bulletin.

Why was it done?
Errors of miscalculation, doses inappropriate for renal function and at extremes of weight were reported when doses of medication were written as ‘mg/kg’ without stating the dose to be given e.g. gentamicin 5mg/kg, vancomycin 15mg/kg and enoxaparin 1.5mg/kg.

How was it done?
Support from key stakeholders was sought to endorse the initiative. Verbal and written education was given to nursing, medical and pharmacy staff to implement the initiative on an agreed date. Refusal to administer medication unsafely prescribed was key to successful implementation. Patient’s weight was not always available and additional equipment was provided to overcome this problem. The risk of withholding treatment was considered and an escalating referral process was recommended contacting the Senior House Officer, then Registrar and ultimately the patients Consultant to avoid lengthy delays to patient treatment. Nurses felt supported in refusing to administer medication.

What has been achieved?
A point prevalence study of all inpatients was carried out monthly to ascertain the level of compliance Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 % of patients with total dose prescribed correctly 67.0 96.7 100.0 100.0 88.9 87.5. Results showed overall improvement from March to August and full compliance in May and June. Success was achieved through a multidisciplinary approach involving all key stakeholders, a forcing function and support from and for front line staff.

What next?
This initiative has been further developed to become ‘Monthly Safe Prescribing Metrics’. Other prescribing metrics such as using ‘iu’ for insulin, prescribing appropriately for patients at extremes of weight and using the abbreviation ‘mcg’ for medications dosed in ‘micrograms’ were included. Initiatives to improve all metrics are ongoing. Safe prescribing metrics could help to positively influence prescribing culture in other healthcare settings.

Keywords | Drug dosage errors, error-avoiding strategies, quality improvement
Conflict of interest | I have no potential conflict of interest to disclose.

A QUALITY IMPROVEMENT PROJECT ON HEPARIN INFUSION SAFETY IN AN ACUTE TEACHING HOSPITAL

Authors: Anthony Hackett, Alice Oborne, Emma Ritchie, Caroline Broadbent, Rebecca Chanda, Karen Breen

What was done?
A computerised clinical pharmacy tool is integrated into the health information system of our group of hospitals (5000 beds) to promote efficiency of pharmaceutical analysis in order to improve patient safety. Pharmaceutical algorithms (PA) are conceptualised to improve drug related problems (DRP) detection and their resolution through pharmaceutical intervention (PI) according to a defined conduct to be held: anamnesis of subjective and objective elements of appreciation, DRP characterisation and PI transmission. Pharmaceutical analysis is performed by the use of Pharmaclass® (Keelurtle). This software has been interfaced with 5 health data flow of two health facilities (1000 of the 2000 beds were tested): identity and patient flow, medication data, laboratory results examination, medical history, physiological constants. PA are partially encoded as rules in Pharmaclass® that issues alerts analysed by a pharmacist.

Why was it done?
Drug iatrogenia costs global health systems $52 billion annually. The third global patient safety challenge aims at reducing the global burden of iatrogenic medication-related harm by 50% within 5 years [1]. Pharmaceutical analysis is a fundamental activity, a regulatory obligation in many countries but remains a challenge. This practice is highly variable. A graphic definition of the target pharmaceutical analysis has been formalised in December 2017 which sets the basis for its digitalisation, effectively implemented since January 2019. The aim is to build a corpus of the most relevant PA to facilitate clinical pharmacist practice.

How was it done?
Health data are lacking of semantic interoperability which Pharmaclass® aims at overcoming from electronic health record (EHR) queries in real time. A corpus of PA has been structured integrating the conduct to be held. PA were created by modelling the pharmaceutical experiment with the thread of criticality. PA were validated by consensus.

What has been achieved?
80 PA were encoded into Pharmaclass®: 40 are targeting serious adverse drug events. 1516 alerts were analysed and 539 PI transmitted during the 9-month test period.

What next?
This practice is applicable to any pharmaceutical analysis that uses data from an EHR. Clinical pharmacy societies should host and take care of updating corpus of PA. Its educational interest should be exploited. A European interest group for artificial intelligence in clinical pharmacy is being created.

Keywords | Drug related problem, pharmacy interventions (PI), computerised medical record
Conflict of interest | I have no potential conflict of interest to disclose.
What was done?
A Trust-wide electronic prescribing and medicines administration (EPMA) system was implemented in 2015. Complex infusions, e.g. unfractionated heparin (UFH) infusions, remained on paper due to EPMA functionality limitations. The complex infusion function was added into later EPMA upgrades. A multidisciplinary team (MDT) involving nursing, medical and pharmacy staff working within anticoagulation, EPMA and medication safety sought to design UFH infusions in EPMA.

Why was it done?
Anticoagulants such as UFH are recognised as high risk drugs. UFH requires frequent monitoring of the activated partial thromboplastic time ratio (APTT), ensuring therapeutic anticoagulation and minimising adverse effects. UFH infusions and the APTT were recorded using a paper based system. Incident reporting identified by the paper system resulted in inappropriate monitoring and management of UFH infusions, and dose omissions which could have resulted in harm.

How was it done?
Baseline audit (Paper-March 2016): Patients prescribed UFH infusions (n=14) were identified using SharePoint (e-reporting) by searching for the UFH infusion placeholder. Performance was measured against eight audit standards.

Re-audit (EPMA-March 2019): Patients prescribed UFH infusions (n=26) were identified using SharePoint by searching for those prescribed a UFH infusion on EPMA. Performance was measured against the same eight audit standards.

Chi square applied to results to test for statistical significance.

What has been achieved?
Audit standard 2016 audit v 2019 audit
1-Baseline APTT checked before starting infusion 93% v 100%, p=0.1
2-Received correct loading dose of heparin based on APTTz 79% v 96%, p=0.07
3-APTTz checked 6 hours after infusion started 72% v 100%, p<0.05
4-APTTz checked 6 hours after infusion titrations 86% v 96%, p=0.2
5-APTTz in target range within 24 hours 50% v 70%, p<0.05
6-APTTz checked 24 hours after 2 consecutive APTTz’s in range 100% v 100%=no change
7-Patient receives a medical review 24 hrly 65% v 100%, p<0.05
8-Heparin syringe and giving set changed 24 hrly 65% v 100%, p<0.05

UFH related incidents reduced from one incident per 1.6 infusions, to one incident per 6.5 infusions following the implementation of an EPMA system.

UFH incidents as a proportion of all anticoagulant incidents reduced from 43% (March-2016) to 20% (March-2019).

What next?
Electronic solution’s for high-risk, complex infusions such as heparin prescribing and monitoring improved care, quality and safety. Further high-risk infusions such as insulin are being developed.

Keywords | Electronic prescribing system, error-avoiding strategies, high risk medication.
Conflict of interest | I have no potential conflict of interest to disclose.

PATIENT-CENTRED CARE IN ATRIAL FIBRILLATION: AN INTEGRATED MANAGEMENT APPROACH

Authors: Virginia Silvari, Suzanne McCarthy, Gerry Allen

What was done?
The atrial fibrillation (AF) clinic was established in a tertiary referral hospital. The clinic is led by a hospital pharmacist (HP), with expertise in cardiology and anticoagulation, and an advanced nurse practitioner (ANP) specialised in electrophysiology. Cardiologists’ input is available when required. In line with AF guidelines of the European Society of Cardiology (ESC), patients attending the clinic receive full stroke risk assessment and are presented with different treatment options by the Multidisciplinary Team (MDT). These options include heart rate/ rhythm control and stroke prevention and where appropriate DC-cardioversion. Patient’s preferences guide management of the treatment.

Why was it done?
Before its establishment, patients were referred by primary and secondary care physicians to a general cardiology clinic, often resulting in delay of the initial assessment and/or commencement of treatment for AF by the ANP. The HP had no involvement in this care pathway. The AF clinic has shortened the referral pathway for patients; physicians now refer patients directly to the clinic. The HP is responsible for medication optimisation; counselling and education whilst clinicians can focus on clinical examinations, diagnostics and analysis of tests results.

How was it done?
Stakeholder engagement was essential in establishing the clinic and planning meetings were used to ensure seamless delivery of the service. Analysis of the process showed that the critical path (bottleneck) was access to diagnostics on the same day of attendance of the patient to the clinic. Therefore, the clinic was established on a day where the cardiology-physiology department had sufficient resources to accommodate the clinic. It was also necessary to ensure allocated time for the ANP for HP to deliver the service.

What has been achieved?
The HP has improved patient safety by conducting medication reviews, in particular optimisation of anticoagulants according to patients’ preferences (warfarin versus direct oral anticoagulants) and their characteristics such as renal functions, body weight and age. HP also provides to the patients a one-to-one counselling session on their medications (focus on anticoagulants), adherence, drug interactions and side effects.

What next?
Having seen the benefits of this AF clinic and the holistic service it delivers, it is recommended that hospitals establish an AF clinic to provide optimum treatment and prevent AF-related complications.

Keywords | Pharmaceutical care.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPLEMENTATION OF A COMMUNICATION CIRCUIT OF ALERTS AND SAFETY NOTES RELATED TO DRUGS FROM THE PHARMACY DEPARTMENT

Authors: Ignacio García Giménez, Natalia Martin Fernández, Olalla Montero Pérez, Ernesto Sánchez Gómez, Isabel María Carrión Madroñal

What was done?
A communication circuit of alerts and safety notes related to drugs coming from the “Agencia Española de Medicamentos y Productos Sanitarios (AEMPS)”.

Why was it done?
The aim is to implement a protocol to follow when these safety notes/ alerts are released from the AEMPS. It comprehends the reception...
GOOD PRACTICE INITIATIVES

of the information, its registration and its communication, when needed, to the rest of the healthcare professionals.

How was it done?
At the reception of an alert from the AEMPS, the first step is to check if the drug has been acquired by the Pharmacy, and then act in accordance with the recommendations, informing the Departments in which the medication had been dispensed. If a drug must be retired and a stock break is generated, the healthcare professionals must be informed as well. Security notes from the AEMPS are published in the local hospital website, where the documents sent by the AEMPS can be found. If this medication is included in the Pharmacotherapeutic guide, a notification is shown when it is prescribed. Finally, all alerts and security notes, with the pharmacist intervention, are registered in a database.

What has been achieved?
Since the implementation of the circuit, 14 alerts and 9 security notes were sent from the AEMPS in a period of 6 months. No interventions regarding the alerts were needed. Healthcare professionals were informed when the security notes were released, pointing to the patients at risk, the precautions required and the alternative therapies available.

What next?
To incorporate it as an indicator of quality of care within the procedures performed by the pharmacy department and detect areas of improvement.

Keywords | Pharmacy interventions (PI), patient safety, improvement action.
Conflict of interest | I have a potential conflict of interest to disclose.

THE OPIOID WORKING GROUP: AN INTERDISCIPLINARY WORKING GROUP TO IMPROVE THE CORRECT PRESCRIPTION AND APPLICATION OF OPIOIDS IN THE HOSPITAL SETTING

Authors: Imke Willrodt, Delia Bornand, Jimena Ramos, Stojan Petkovic, Giulia Mohr, Anne Leuppi-Taegtmeyer

What was done?
The Opioid Working Group at the University Hospital Basel is an interdisciplinary working group including representatives from different professions (physicians, nurses, pharmacists) and departments (medical, surgery, gynaecology, emergency, pain therapy, palliative care, pharmacology and toxicology, patient safety and information technology).

Why was it done?
Due to critical incidents involving opioids reported internally at the University Hospital Basel in 2018, there was an urgent need to evaluate underlying reasons for these events. The Opioid AG was established with the aim to mitigate risks for the correct prescription and application of opioids, and therefore to improve patient safety.

How was it done?
The thorough analysis of root causes for the critical incidents revealed prescribing and application errors, such as non-observance of kidney failure, pharmacodynamic interactions of opioids with other prescribed drugs, inadvertent overdosing – in particular with liquid drug formulations, or patient mix-ups.

What has been achieved?
Consequently, the following steps are being taken to address these risks: 1. Optimisation of the prescribing software including opioid prescription templates, links to existing opioid unit conversion tables for liquid forms of diamorphine, morphine, hydromorphone and oxycodone (milligrams to millilitres) as well as clearer display of “as required” opioid prescriptions on the patients’ electronic drug charts. 2. Preparation of Standard Medication Preparation Schemes for nursing staff of the emergency department. 3. Development of an additional label (concentration, patient initials, date of reconstitution, date of expiry of reconstituted solution) for parenteral diamorphine. 4. Improvement in detailed written instructions for the correct preparation, labelling, application and disposal of intravenous and oral drugs (to include opioids). 5. Evaluation of a hospital opioid safety self-assessment tracking tool.

What next?
A comprehensive evaluation will take place, 6 months after the implementation of all measures. We will use the number of naloxone prescriptions on the wards as a key performance indicator to measure the success of this project. The reported critical incidents involving opioids will also be assessed before and after the implementation of all measures. This evaluation will help to identify open questions, potential gaps and further needs for improvement to be addressed by the interdisciplinary team.

Keywords | Administration, prescription appropriateness, patient safety.
Conflict of interest | I have a potential conflict of interest to disclose.

SAFETY IMPROVEMENT IN PAEDIATRICS: ASSISTED PRESCRIPTION OF INTRAVENOUS MIXTURES

Authors: Iván Maray Mateos, Miguel Alaguer Calero, Adrián Rodríguez Ferreras, Cristina Calzón Blanco, Cristina Álvarez Asteinza, Lucía Velasco Roces, Ana Lozano Blazquez

What was done?
Development of an assisted prescription system of intravenous mixtures adapted to paediatric patients in which both the drug dose and the diluent volume are automatically calculated according to the patient’s weight.

Why was it done?
Intravenous drugs in the paediatric population bring up additional issues than the usual in adults. In their prescription, not only does the dose have to be adapted to the patient’s weight, the volume in which the drug is diluted must also be adapted to the reduced fluids requirement without jeopardising the stability of the mixture. In view of these facts, IV drug prescription in paediatrics implies a higher risk of medication errors. This new prescribing system simplifies prescription and reduces risks.

How was it done?
A literature review of drug dosing in paediatrics and their stability in different diluents was performed. For every drug the following parameters were considered: maximum dose in children (mg/kg), maximum concentration allowed (mg/ml), common doses and volumes in adults. Using these values, a system was built which calculated drug dose and diluent volume according to the patient’s weight and the maximum concentration allowed for stability reasons. For safety and to ease the preparation, the diluent volume in millilitres was rounded up to the next 10. In order to avoid overdosing overweight or older paediatric patients, maximum dose and diluent volume were narrowed down to the usual quantities in adults. Ultimately, this system was integrated in the electronic prescription system. A protocol was created, named “drug name” IV mixture PEDIATRICS. So, by selecting this protocol in a specific patient, the target dose and the diluent volume are automatically calculated.
What has been achieved?
This system was implemented for 38 drugs. From July 2018 to April 2019, 910 IV mixtures have been prescribed from the following Anatomical Therapeutic Chemical (ATC) groups: A02 Drugs for acid related disorders (39), J01 Antibacterials for systemic use (287), J02 Antimycotics for systemic use (3), J05 Antivirals for systemic use (8), A04 Antiemetics and antinauseants (175), N02 Analgesics (395), N03 Antiepileptics (3).

What next?
This method could be implemented in other electronic prescription programmes. The system must be updated by the Pharmacy Department, introducing new drugs and constantly reviewing stability databases, posology regimens, and information regarding dilution of parenteral drugs.

Keywords | Medication error, databases, error-avoiding strategies.
Conflict of interest | I have no potential conflict of interest to disclose.

PROCEDURE TO ENSURE CORRECT MEDICATION MANAGEMENT IN THE PERIOPERATIVE PROCESS

Authors: Noelia Vicente Olivero, María Muñoz García, Álvaro Ruigómez Salz, Montserrat Ferre Masferer, Teresa Bermejo Vicedo, Eva Delgado Silveira, Lucía Quesada Muñoz, Ana María Alvarez-Díaz

What was done?
We designed and implemented a flow chart to ensure the patient compliance of anesthetist's medication recommendations prior to surgery. We designed a protocol for the perioperative medication management.

Why was it done?
An analysis of the indicators of the perioperative process reflected the need to improve their quality. One of the causes of scheduled surgery cancellation was the lack of the follow up of the anaesthetist's medication recommendations. Medications need to be carefully managed to prevent perioperative complications.

How was it done?
A multidisciplinary group was formed with the management of the hospital and representatives of all the services involved in the perioperative process. The group designed the flow chart of the process by consensus. Patients were candidates to enter in this process if they were on treatment with anticoagulant or 2 or more medications from the following groups: antiplatelet, antihypertensives, antiabetics. A pharmacist called by phone three times (the day before, the day of medication change, and the day after) to the patient to ensure the compliance of anaesthetist's recommendations. Medications need to be carefully managed to prevent perioperative complications.

A programme which includes every patient admitted into the Internal Medicine department. It consists of three steps: clarification of chronic medication that the patients are taking, we handle them and updated schedule of their drugs upon discharge and we check the coherence with the active prescriptions.

Why was it done?
Our main goal was to improve patient's safety. Because we noticed that many patients did not take actually all the drugs that were prescribed by the physicians, and other times there were drugs that the patients were taking because they had an active prescription, but they were not supposed to. Additionally, we aimed to improve the drug-related information that the patients take home.

How was it done?
We interview the patients during the admission in order to clarify and update the chronic medication that they are taking. When a patient is about to be discharged, the nurses call us, so at this moment we talk to the physician to know what changes are going to be made on the medication. To coordinate with the physicians and nurses, we had two meetings in which we established the timing of the programme, so the patients don't have to wait too long for us. When we know the changes that the physician is going to make, we update the medication schedule to handle it to the patients or their family, and we explain to them the changes and how they should manage the new drugs. If any discrepancy or medication-related problem is detected, we talk to the physician to solve it.

What has been achieved?
In the last four months, we performed 180 discharges and we solved together with the physicians 20 discrepancies. Patients are now receiving more comprehensive information about their treatment.

What next?
To continue with the programme and broaden it to the rest of our hospital departments. Also we are working on a way of uploading our pharmacy schedules to the electronic medical record of the patients, so they can be available for every healthcare worker, which would improve even more the transitions of care.

Keywords | Patient education, patient safety, improvement action.
Conflict of interest | I have no potential conflict of interest to disclose.
ENHANCING MEDICATION SAFETY BY IMPLEMENTING AND IMPROVING THE USE OF A SMART PUMP DRUG LIBRARY IN A TERTIARY HOSPITAL

Authors: Mohammed Almeziny, Maha Aljuhanei, Fahad Alkharji

What was done?
A smart pump was implemented in a tertiary hospital.

Why was it done?
Smart infusion pumps have been introduced to prevent medication errors and they have been widely adopted by healthcare. They incorporate safeguards such as soft and hard dosage limits.

How was it done?
A task group was formulated from all involved parties to cover all issues related to practice, and it involved nursing and pharmacy staff to overcome all obstacles that may face the project; in addition the information technology (IT) department was involved to determine the facilitation of all technical issues. At the beginning the group faced two main barriers: creating the initial drug library which was a significant amount of work for the pharmacy, then uploading the drug library. In addition, all these works were to be carried out manually by the medical engineering. The quantitative data available from the smart pump software were used to improve drug library use. The team started to collect feedback from and communicate feedback to direct care nurses about drug library usage via e-mail, staff meetings, a “whatsapp” group and one-on-one conversations. This included asking nurses why the drug library was not being used regularly. The most frequent responses included “The pump is hard to use,” “The list doesn’t have the medications I need and, “It’s just easier to use the rate-based programming feature”.

What has been achieved?
The pump library usage percentage for total infusions was raised from a baseline of 2.85% to 30.97% in the first week. After careful review by the nursing, pharmacy, and medical leadership, some changes to the library were made. These included standardising drug concentrations in the pump library and providing ongoing staff education as well as implementing the best practices cited in the ISMP’s guidelines for the use of smart pumps; and running daily usage and weekly soft limit override reports from the pump library. Furthermore, a new category, “feeding”, was added to the pump library; finally all medications and plain fluids were added to the pump library.

What next?
A Bar-Code Medication Administration System is needed (BCMA), to ensure the right patient gets the correct drug, dose and route at the right time.

Keywords | Medication error.
Conflict of interest | I have no potential conflict of interest to disclose.

IMPACT OF A MEDICATION REQUEST TOOL FROM THE NURSING ADMINISTRATION VIEW IN HOSPITALISATION

What was done?
This tool is part of “Safe Medication Administration in Hospitalisation/ Avoid Interruptions” project. A “button” was included in the nursing administration view of the electronic prescription programme, which when activated automatically generates a request to the Pharmacy Service for a dose of required medication. Hospital Information Systems were contacted for the design. All requests generated during the administration of medication were automatically received in Pharmacy Service. They were grouped by plant, listed, deducted from stock and dispensed at the agreed times.

Why was it done?
Lack of stock delays medication administration by nurses. This situation also generates hospital warden displacements to Pharmacy Service and telephone interruptions of Pharmacy technicians’ work. The main aim was to amend stock lack management to improve patient security during medication preparation and administration. The secondary objectives were: reduce interruptions of other health professionals and automate warehouse exits, avoiding errors of manual updating of Pharmacy stock.

How was it done?
The tool was developed by Hospital Information Systems, in collaboration with nursing, and staff training was carried out for correct handling of the tool. Also, medication dispensing schedules were agreed with the hospital warden. 15 days before tool implementation, the Pharmacy Service analysed all medication requests made from hospitalisation. Data collected were: plant and shift requested, reason, existence of pattern, requested medication, requested units, notice to auxiliaries to collect medication. After the first week of implementation, the same assessment of requests was made during the same period to compare and evaluate the impact of this tool implementation.

What has been achieved?
When both periods were compared, prescribed medication requests decreased from 198 to 15, this difference being statistically significant (Fisher’s exact test p=0.008). This difference meant significant reduction of interruptions in Pharmacy technicians’ daily work. Requests reasons were lack of dose in 43.4% (n=95) of cases, immediate prescriptions in 29.2% (n=64) of cases and treatment change in 20.5% (n=45) of cases. 29.2% of all requested medications belonged to the antimicrobial and antiviral group. 62% (n=135) of the total requests were received in the morning shift. Hospital warden displacements were significantly reduced when comparing both periods from 102 to 3 (Chi square test, p=0.006). This meant a significant reduction in interruptions in hospital warden work. It has been possible to standardise and improve efficiently nursing management of medication stock lack.

What next?
The incidents technical improvement is pending, as well as training of new nursing staff. It is possible to implement this tool in all hospital units that have electronic prescription.

Keywords | Error-avoiding strategies.
Conflict of interest | I have no potential conflict of interest to disclose.

STANDARDISATION OF DILUTED POTASSIUM INTRAVENOUS SOLUTIONS IN NEONATAL CARE UNITS

Authors: Luis Pérez de Amezaga Tomás, María Magdalena Parera Pascual, Mónica Sanz Muñoz, Catalina March Frontera, Gonzalo González Morcillo, Alejandra Mandilego García, Álvaro Medina Guerrero, Ana Filgueira Posse, Montserrat Vilanova Boltó

What was done?
Development of a protocol that standardises diluted potassium intravenous solutions for neonates (including those preterm over
GOOD PRACTICE INITIATIVES

28 weeks of gestation). This allowed us to remove concentrated potassium chloride (KCl) 2M from neonatal care units in our hospital. For this purpose, the hospital pharmacy centralised the preparation and distribution of KCl ready-to-use infusions.

Why was it done?
Administration of intravenous KCl produces hyperkalaemia and this can result in cardiac arrest and death. The Institute for Safe Medication Practices (ISMP) as well as other security agencies have recommended the withdrawal of KCl 2M from ward stock. This project was born as a response to these recommendations. We focused on a group of patients where these practices have not been extensively implemented. The aim of the protocol was to standardise the prescription, preparation, dispensation and administration of KCl to neonates in our hospital.

How was it done?
The elaboration of the protocol took place as follows: • A multidisciplinary team designed KCl ready-to-use solutions that met the requirements of the newborn: - Glucose 10% 250mL with 5 meq KCl (20mEq/L solution) - Glucose 10% 250mL with 10 mEq KCl (40mEq/L solution). • The hospital pharmacy centralised the preparation of these solutions. A risk assessment was performed and determined an expiration date of 7 days. • These solutions were stocked at all neonatal care units: Intensive Care Unit, Hospitalized Paediatric Unit and Paediatric Emergency Unit. • Weekly, the hospital pharmacy distributes these solutions and disposes of the expired ones. • Only ready-to-use KCl solutions were able to prescribe at the electronic prescription programme. • A formation plan was implemented to train all the professionals involved in neonatal care.

What has been achieved?
The protocol was implemented in November 2016. Since then, 65 patients have been treated with 20mEq/L solution and only 1 patient with 40mEq/L solution. No remarkable imbalances in electrolytes have been detected resulting from the standardisation of the fluid therapy with KCl. Only 3 incidents have been registered. All of them were prescription errors (solution selection); they reached the patient, but without damage.

What next?
Nowadays, we are developing a stability study of the KCl solutions in order to assess the appropriateness of the expiration date.

Keywords | Ready to use, high risk medication, error-avoiding strategies.
Conflict of interest | I have no potential conflict of interest to disclose.

A NOVEL CLOSED SYSTEM DRUG-TRANSFER DEVICE FOR ORAL DOSAGE FORM HELPING PATIENTS WHO CANNOT SWALLOW SOLIDS

Author: Salim Hadad

What was done?
CSTD – for oral dosage form new device of its kind, combines the act of crushing the various drugs, dissolve in liquid and give to a patient who cannot swallow for various reasons, that mechanically prohibits the transfer of environmental contaminants into the system and the escape of hazardous drug or vapor concentrations outside the system.

Why was it done?
Indicates GPI award nominee
It remains that new solutions to increasing the safety of handling Solid Dosage Form hazardous drugs have to be developed. Conceptually, through operating in a closed system, CSTDs should significantly reduce the risks to pharmacists and nurses. There are two main drawbacks of the known solutions: 1. The crushing and dilution of the solid dosage form medicine is done with an open vessel to the environment, such as a porcelain crater, which may cause the work environment to be contaminated with carcinogenic or teratogenic substances, that could expose and endanger the medical staff to hazardous substances in the course of their duties as providers of medical care. 2. The tools available today are reusable, requiring a thorough cleaning process between different materials (drugs), which can lead to cross-contamination between different doses of drugs, which are crushed one after the other with the same instrument.

How was it done?
We designed the device with 3D software (solid work). It consists of a number of functional parts. The main ones are: a 20 ml barrel, a top part of which is a piston with a bottom basket loaded with the solid medicine; this part is sealed as a barrel from above. With the help of mechanical rotation, the drug breaks down into small particles that fall into the inner space of the barrel. Adding the liquid through a fluid port disposed on the bottom barrel which is completely sealed. The removal of the liquid drug through a unique adapter which at its end is adapted to the gastric tube or oral administration to the patient.

What has been achieved?
1. The complete process of crushing and liquefying of the solid drugs is carried out under sealed conditions to the immediate environment and without fear of exposure to residues of toxic substances to the medical caregiver. 2. A one-time use system saves complex cleaning process. 3. There is no risk of cross-contamination between different drugs. 4. Saving personal protective equipment such as gloves, masks, lab coats clean rooms, etc. which is necessary for protection and for the safety of the caregiver team.

What next?
Applied research will be carried out by pharmacists and nurses to test the efficiency of the new device (as a basic prototype). These experiments will take various non-cytotoxic pills, will be dummy operations, in which the crushing and liquefying will be performed, and the solution or suspension will be transferred through the gastric tube, according to an approved research protocol.

Keywords | Administration, accident and emergency.
Conflict of interest | I have no potential conflict of interest to disclose.

AN AUDIT OF DISCHARGE PRESCRIPTIONS FOR SURGICAL AND MEDICAL PATIENTS WITH A QUALITY IMPROVEMENT INITIATIVE

Authors: Eva Heffernan, Deirdre Smith, Avril Tierney, Louise McDonnell

What was done?
The aim of this project was to evaluate the current level of discrepancies on discharge prescriptions for surgical and medical patients and to ascertain if a quality improvement (QI) initiative can impact on the severity of medication error at the point of discharge.

Why was it done?
Transitions of care such as hospital discharge present an opportunity for medication error. Lapses in communication at this interface are common. For the next healthcare provider (HCP) to issue the correct medication safely and in a timely manner, the discharge prescription needs to bridge this communication gap. Prescribing errors are the most frequent subtype of medication errors and can be repeated systematically for prolonged periods. Detection of medication error using tools such as audit, learning from these errors and planning corrective action is essential to building safer healthcare systems.
GOOD PRACTICE INITIATIVES

This study adapted the Health Information and Quality Authority (HIQA) national standard for patient discharge summaries to create a benchmark for discharge prescriptions in SVPH. A QI initiative targeting prescribers was developed. This was designed as a bundle intervention and was called the Discharge Prescription Education Bundle (DPEB).

How was it done?
Uncontrolled consecutive baseline and re-audit of discharge prescriptions on a 26-bed mixed medical and surgical ward. The baseline audit assessed 70 patients’ discharge prescriptions. Deviations from the standard were termed discrepancies. Discrepancies were divided based on capacity to cause error (NCC-MERP Category A) and error occurred (NCC-MERP Category B-I). Discrepancies where an error occurred (NCC-MERP Category B-I) were reported using the in-house medication incident reporting (MIR) system and dually assessed by an independent panel and the project lead for potential to cause harm. The QI initiative was implemented and its impact assessed with a re-audit of 70 patients’ discharge prescriptions.

What has been achieved?
The overall number of discrepancies reduced from 156 in the baseline to 59 in the re-audit (p<0.05). Overall compliance with the audit standards improved from 17.1% to 54.3% (p <0.05). In the baseline audit 22.8% (n=16) of patients had a discrepancy where an error occurred; this reduced to 2.65% (n=2) in the re-audit (p<0.05). The seventy of errors reduced in the re-audit.

What next?
The QI initiative used was proactive not reactive. Use of the discharge education bundle was not restricted to pharmacy opening hours. This initiative was very low cost to implement. Following on from the successful results of this project one component of DPEB called the discharge prescription visual prompt is now preprinted on all SVPH discharge prescriptions as a reminder to prescribers.

Keywords | Discharge prescription, prescribing errors, quality improvement.
Conflict of interest | I have no potential conflict of interest to disclose.

BUILDING THE FOUNDATIONS OF A MEDICATION SAFETY PROGRAMME IN AN ACUTE HOSPITAL

Authors: Bernie Love, Tracy McFadden, Patrick Martin, Val Connolly, Deirdre Brennan, Michelle Griffin, Danielle Bracken, Siobhan Maguire, James Carr

What was done?
Connolly Hospital Blanchardstown launched a formal Medication Safety Programme in November 2017 by appointing a Medication Safety Facilitator and establishing a multidisciplinary Medication Safety Committee to promote and support the safe use of medications. The Medication Safety Committee undertook a number of activities to establish the programme in the hospital.

Why was it done?
Avoidable harm caused by medication is one of the most commonly reported adverse events in healthcare settings.

How was it done?
- An evidence-based literature review to define and guide the scope, breadth and direction of the programme.
- A baseline in-depth analysis of locally reported medication incidents (2016/2017) on the National Incident Management System (NIMS) was conducted to identify initial targets for improvement. Analysis was undertaken using NCC-MERP, a recognised and validated tool used specifically for medication incidents.
- An annual work-plan, incorporating necessary elements of a medication safety programme, was devised by the committee defining goals for the year.

What has been achieved?
- Safety Culture: Prominent commitment from hospital management to medication safety.
- Investigations into medication errors aligned to a just and fair systems approach.
- Promotion and encouragement of medication safety reporting and learning with a Medication Safety Awareness Day.
- Implementation of the ‘Know, Check, Ask’ campaign to enhance medication safety by empowering patients.
- Governance: • Organogram updated to reflect reporting relationship of new committee.
- Medication Safety made standing item at Quality & Safety Executive meetings.
- Annual report submitted to Hospital Executive Committee Measurement & Monitoring of medication incidents.
- Quarterly report produced and disseminated to front-line staff tracking and trending medication incidents including narratives.
- Performance indicators established for: -No. of incidents reported (2018 reporting increased by 32% over 2017); -Reporter of incidents; -Category of harm; -Stage of medication use process where incidents have occurred. Education & Training: • Regular face-to-face education sessions arranged with front-line staff.
- Quarterly medication safety bulletin devised and disseminated, informed by audit findings and incident reports.
- The successful Medication Safety Minute initiative from St James’s Hospital was adopted and implemented, with content informed by local incidents. Development, Updating and Dissemination of PPPGs. • New IV drug administration guides (n=53) developed and updated. • Introduction of one-page ‘Medicines Information Sheet’ as quick reference guides for key topics.
- DOAC prescription and administration guide developed and circulated.
- Audit: • Audit programme established informed by incident analysis, complaints and best-practice including introduction of an ‘audit window’ to gather hospital-wide data. Quality Improvement: • Informed by incident analysis, best-practice and audit findings, a number of moderate-high leverage quality improvement projects were initiated including removal of concentrated potassium from general clinical areas, introduction of an insulin & glucose monitoring record and introduction of an automated dispensing cabinet for out-of-hours access to medication.

What next?
The structural aspects established for the Medication Safety Programme have been successful in establishing a programme in the hospital and are reproducible by other centres. Work continues in Connolly Hospital to identify themes of incidents, audit of practice and implementation of quality improvement initiatives.

Keywords | Adverse drug events, medication error, quality standards.
Conflict of interest | I have no potential conflict of interest to disclose.

CAPTURE DATA AND CONQUER CLOTS

Author: Karina Doherty

What was done?
An App was developed to collect data on venous thromboembolism (VTE) prophylaxis compliance across St Vincent’s Private Hospital (SVPH).

Why was it done?
VTE is a collective term for blood clots usually in the legs or lungs. In Europe, there are 544,000 VTE-related deaths every year. VTE is responsible for more deaths than AIDS, breast cancer, prostate cancer and motor vehicle accidents combined. SVPH Pharmacy Department has been conducting annual Clinical Audits on VTE prophylaxis using a paper based system. However, the process was time consuming and...
GOOD PRACTICE INITIATIVES

limited the frequency of audit and the opportunities for identifying opportunities for improvement in compliance. SVPH has a high number of patients with high risk of VTE including Medical Oncology patients and Surgical patients. Compliance rates over preceding years were running at 75%; however, it is hoped to achieve a target of 90% compliance by 2020.

How was it done?
Different technologies were explored and an App developer was selected. Funding was sourced. Stakeholders were invited to get involved in the development team; this was challenging and a lot of negotiations were had as to how the format of the App would be developed and carried forward. The next step when all the details had been finalised was launching the App.

What has been achieved?
Every month seven patients are randomly selected for audit and an auditor (in SVPH a pharmacist) inputs the data on the App which the lead auditor analysis. At SVPH compliance has increased from 75% prior to the app, to post implementation of the App where monthly VTE audits were conducted on all inpatient wards. The results are 92% compliance with VTE prophylaxis for 2018, and for 2019 up to Sept 2019 96% compliance.

What next?
It is hoped that this App will be a useful tool that will help SVPH and other hospitals to achieve a higher compliance with VTE prophylaxis guidelines and help prevent clots in patients. This App can be customised to individual hospital requirements. Technology has been shown to assist with clinical audit and will be used in various projects to make auditing easier and faster and therefore help healthcare workers to provide a better service to patients.

Keywords | Clinical pharmacy services, multidisciplinary team, information technology.
Conflict of interest | I have potential conflict of interest to disclose.
* Sanofi assisted in the funding to develop the app.

ALGORITHM OF SAFE AND CORRECT PREPARATION OF CHEMOTHERAPY

Authors: Marjana Fortuna, Petra Tavčar, Jure Dolenc, Monika Sonc

What was done?
Cytostatics are carcinogenic, mutagenic and teratogenic drugs. Handling requires a number of organisational and technical systems. All products should be safely and accurately prepared with special care to ensure the highest possible product quality, correct dose, the right patient, the right medicine, the right carrier solutions and right administration, without microbiological and particle contamination. The prescription and preparation of cytostatic drugs must be closely monitored. The most important factor in achieving this is the constant training of pharmacists in pharmaceutical techniques.

Why was it done?
To support us in understanding our role in the preparation of chemotherapy products. To prevent the risk of harm to patients. Recognise prescribed error in pre-documented chemotherapy protocols.

How was it done?
This year started with monthly reviews and training in the following subjects by using a written algorithm. Risk to product: Drugs reconstitution negative pressure isolators, leakage/damage or defects of vials, particles, transport and storage. Risk to patient: Incorrect calculations, microbiological contamination, incorrect administration, extravasation, incorrect administration route, incorrect labelling. Risk to operators: Contamination, toxicity, equipment, gloves, cleaning, occupational exposure. All checks have been made throughout the whole of preparation process, adhering to standard operating procedures (SOP-s).

What has been achieved?
We concluded that continuing education by using a written algorithm is useful practice. It helps prevent automatic work, remind us to check each step in process and know how to recognise errors in chemotherapy prescriptions and preparation. In 25 cases of prescribed chemotherapy, intervention of a pharmacist was required. In 5 cases of chemotherapy preparation, pharmaceutical techniques have detected a discrepancy in the prescribed therapy.

What next?
Regardless of experience at work, it is necessary to constantly repeat how to work properly, and awareness why we are doing this.

Keywords | Drug dosage errors, medication error, cytostatic preparations.
Conflict of interest | I have no potential conflict of interest to disclose.

PROTOCOL FOR THE ADMINISTRATION OF DANGEROUS DEPOT DRUGS IN SOCIAL HEALTH CENTRES: ONE YEAR LATER

Authors: Arantxa Andújar-Mateos, José Manuel del Moral-Sánchez, Immaculada Sánchez-Martínez, Francisco Valiente-Borrego, María Muros-Ortega, Andrés Navarro-Ruiz

What was done?
The aim of our study is to determine the integration into clinical practice of a protocol for the administration of dangerous depot drugs in the social health field after a year has elapsed since its implementation.

Why was it done?
When the National Institute for Occupational Safety and Health (NIOSH) published a list that included drugs considered dangerous for general and reproductive health, we had to devise a protocol in our field so that parenteral drugs could be administered in a safe way for health personnel.

How was it done?
The Depot Dangerous Drug Administration Protocol was intended to increase the safety of healthcare personnel in their preparation and administration. The recommendations contained therein, issued by official agencies and in force at the time, were transmitted by different means of communication: - Verbal: in a physical meeting with the nursing coordination of all the residences. - Written: through the distribution of the protocol via e-mail and in folders shared with the centers. - Audiovisual: elaboration and diffusion of a video explaining the preparation of the different drugs affected. For its implementation, the points mentioned in the previous section were implemented and a reference pharmacist was made available to each residence to resolve any doubts in this regard. Within a year of its implementation, from our socio-sanitary pharmacy service and in collaboration with the 16 residences specialising in geriatrics, disability and mental illness, the degree of adaptation to the protocol was measured.

What has been achieved?
In December 2017, the aforementioned protocol was implemented in the 16 residences. Within a year, more than half of the residences, 9 of the 16, acknowledged not taking any of the precautions indicated in the protocol. Of the rest of the residences, 4 stated that they have adopted all the recommendations in each preparation and administration of dangerous drugs and the remaining 3 placed their adaptation to the protocol at between 25% and 50%.
What next?
We believe it is necessary to reinforce the information contained in the protocol every 1–2 months in person. It is also necessary to keep the protocol continuously updated to detect changes in it.

Keywords | Injection.
Conflict of interest | I have no potential conflict of interest to disclose.

THE ACTIVITIES AND IMPACT OF A HOSPITAL-WIDE MEDICATION INITIATIVE

Authors: Alice Oborne, Mark Kinirons, Virginia Aguado, Steve Wanklyn, Laura Watson, Jaymi Mistry, Duncan McRobbie, Abhiti Gulati, Emma Ritchie, David Wood, Niall Stewart-Kelcher, Adrian Hopper, Patricia Snell, Tony West

What was done?
Senior and junior staff collaborated to systematically improve safe medication processes and outcomes in a 1200-bedded multi-site hospital. The work aimed to reduce harm from medicines and improve medication safety culture.

Why was it done?
Medicines are common interventions but have inherent dangers: 9% inpatient prescriptions contain errors, and medication errors occur at an estimated rate of one per patient per day [1-3]. Medication incident reporting was low, with high proportions of harmful incidents.

How was it done?
Pharmacists, doctors, nurses and governance staff set up a Medication Safety Forum which met monthly to focus on high risk drugs, processes and patients. Published literature and international guidance were reviewed [1-3]. Twelve subgroups worked on safer opioid, insulin, anticoagulant, allergy and injectable medicine use and paediatric, elderly, critical care and peri-operative care. Subgroups published guidelines on the hospital intranet. External aviation and patient safety experts reviewed processes. Medication incident data were reported to staff monthly from June 2008. A monthly medication safety newsletter (total 68), screensaver messages, podcasts, mouse-mats, ‘safety days’, audit, training and senior staff promoted best practice. Electronic prescribing and medication administration (EPMA) with decision support was introduced in 2015.

What has been achieved?
The Medication Safety Forum met monthly 2009−2019. Medication incident reporting increased from 60 to over 400 per month (total 31330 over 11 years), whilst harmful incidents all reduced (Figure). Incidents with harm reduced from 51 to 24 in the first to last 20 months. Dose omissions reduced by 10% despite an increase in patient acuity, anticoagulant use and insulin use. The most common incident type was wrong dose, agreeing with Tyynismaa et al, 2017. Incidents per 1000 discharge episodes were reduced by 50% (Figure). Incidents with potential harm reduced by 55% (Figure). Incidents with harm reduced by 9% inpatient prescriptions contain errors, and medication errors occur at an estimated rate of one per patient per day [1-3]. Medication incident reporting was low, with high proportions of harmful incidents.

What was done?
We analysed 390 MEs submitted to the UMCL ME reporting system from 2016 to 2018. We compared the HAM list from Institute for Safe Medication Practices (ISMP) and the UMCL HAM list. The criteria such as frequency of the reported ME, severity of harm for the patient, affected population, novelty, etc, were used to identify potential HAM. Furthermore, we calculated the probability of the ME report for the individual medications from the reported MEs and the hospital medication consumption data. The calculation was done for the medications involved in 3 or more reported MEs (Tyynismaa et al, 2017) and for the medications involved in MEs which caused harm to the patient.

What has been achieved?
The joined results from the comparison of HAM lists and reported MEs showed that several other medications could be added to the UMCL HAM list, e.g. individualised parenteral nutrition for the paediatric population, oral sedation agents for children, dialysis solutions, lidocaine IV, methadone, buvipacaine, and nusinersen. The probability-based HAM identifying method supported our previous suggestions to extend the UMCL HAM list. Additionally, the method unexpectedly revealed medications with a high probability of ME and/or harm for the patients, that are not included in any HAM list (ISMP, UMCL), such as romiplostim, parenteral iron preparations, ampicillin with sulbactam, and others.

What next?
In future we plan to develop a paediatric specific HAM list based on the same strategy; i.e. considering international suggestions and analysing paediatric ME reports in UMCL.

Keywords | High risk medication, medication error, process improvement.
Conflict of interest | I have no potential conflict of interest to disclose.

IDENTIFICATION OF HAZARDOUS DRUGS IN EMERGENCY DEPARTMENT: DRUGS CABINET INSPECTION

Authors: Mª Antonia Meroño-Saura, María López-Morte, Taida Rodríguez-Martínez, Pilar Pacheco-López, Consuelo García-Motos

What was done?
The main objective is to label every drug considered “Hazardous” and to review the medication included in the Emergency Department kit.
GOOD PRACTICE INITIATIVES

in a tertiary hospital.

Why was it done?
The publication of the NIOSH list and its application by INSHT in Spain has changed the concept of “Hazardous drug” in terms of its handling and administration, as well as personnel training involved in its management.

How was it done?
Literature about Hazardous drugs was reviewed. All the drugs included in the Emergency Department kit belonging were identified and classified according to their level published in the NIOSH list. A kit’s review was carried out on site, as well as a Hazardous drugs’ categorisation by adequate labels.

What has been achieved?
6 out of 239 drugs included in the emergency kit were labelled as Hazardous drugs, and could be found in 9 different presentations. Regarding its risk level according to the NIOSH list; chloramphenicol, risperdone and all different presentations of phenoxytoin were classified as level 2. Acenocoumarol, colchicine/dicycloverine and all different presentations of valproic acid were classified as level 3. The following incidents were detected:

• Lack of identification: 8 out of the total number of drugs presented identification errors.
• Location error: 4 out of the total number of drugs were not well located.
• Photosensitive: 56 out of the total drugs were photosensitive, of which 11 were not correctly identified or stored.
• Expired drugs: 12 drugs, whose total stock was 399 units. 51 out of the total amount were expired.

After this review, the following measures were carried out:

• Orange labelling for Hazardous drugs’ identification, regardless of their risk level.
• Misidentified drugs were re-labelled, and those that were misplaced were placed in their assigned spot.
• Photosensitive drugs were correctly identified by blue labels and properly preserved.
• Expired drugs were withdrawn.

What next?
Simplifying Hazardous drugs’ identification by a categorisation following a colour code could lead to a safer manipulation by the professionals. During the review of the kit, several incidents were detected and sorted out, which avoided possible medication-related errors. Therefore, it is necessary to establish several control measures in emergency kits in order to avoid errors and improve the safety in the use of drugs.

References:

Keywords | Multidisciplinary team, drug dosage errors, error-avoiding strategies.
Conflict of interest: I have no potential conflict of interest to disclose.

SECTION 6: EDUCATION AND RESEARCH

COMPRENDIUM OF POST-GRADUATE ITALIAN HOSPITAL PHARMACY SCHOOLS: AN INFORMATIONAL GUIDE OF ReNaSFO ASSOCIATION – NATIONAL NETWORK OF ITALIAN HOSPITAL PHARMACY SCHOOL STUDENTS

Authors: Antonio Pirrone, Federica Milani, Luca Cancanelly, Valentina Marini, Daniele Mengato, Roberto Langella

What was done?
“Compendium” project is designed to fill this lack and to gather information on post-graduate SHPs operating in Italy. In addition to outlining a summary description of the SHPs, the Compendium is configured as an official tool to respond and provide targeted information to near-graduates and graduates in Pharmacy (who often contact ReNaSFO) interested to approach the SHPs path.

Why was it done?
On October 5, 2017 the National Network of Italian Hospital Pharmacy School Students (ReNaSFO) was born with the aim to face the various critical aspects of post-graduate
Good Practice Initiatives (GPIs)

Hospital Pharmacy School (SHP), such as the need to make the different paths homogenize among regional SHPs, improve dialogue between colleagues and encourage a more informed approach focused to the training pathway for specialisation. In particular, little official information is available and hard to find about the different realities present in Italy.

How was it done?

Two project coordinators prepared a list of items submitted to representative ReNaSFO student in every 21 operating SHPs. The items refer to: available places and admission requirements, type of entry test, organisation of didactic lessons, exams and residency training, health facilities affiliated with SHP, potential availability of scholarships, useful links of the SHP or university. The help of universities was fundamental, in particular the helpfulness of SHP directors to collaborate with students.

What has been achieved?

As many as 18 SHPs out of 21 (85.71%) have joined the project: Bari, Bologna, Catania, Catanzaro, Camerino, Genoa, Florence, Milan, Modena and Reggio Emilia, Messina, Naples, Padua, Parma, Pisa, Rome, Siena, Turin and Sassari: of these, 14 schools have already sent their finished “Compendium” form.

What next?

Thanks to the widespread presence of associated ReNaSFO students, the initiative has immediately found interest and participation, reconfirming once again the active and unconditional collaboration between SHP students throughout Italy. Despite a heterogeneous situation between different SHPs, we keep working together hopeful to achieve national uniformity of SHPs and to improve educational objectives and training pathways.

Keywords | Educational tools, hospital pharmacy education, national standards.

Conflict of interest | I have no potential conflict of interest to disclose.

DEVELOPMENT OF AN INTERNATIONAL EXCHANGE PROGRAMME IN HOSPITAL PHARMACY PRACTICE

Authors: Agnes Ann Feemster, Nicoletta Zallocco, Carlo Polidori

What was done?

A partnership between the University of Camerino (UNICAM), Camerino, Italy and the University of Maryland School of Pharmacy (UMSOP), Baltimore, Maryland, USA was formed. Under the agreement, the two universities exchange student pharmacists for five-week internships in hospital pharmacy.

Why was it done?

Development of pharmacy education on a global scale is an international initiative. Additionally, employers recognise that global experiences positively impact a variety of applicant qualities, including curiosity, willingness to take risks, a non-judgmental attitude, and a broader worldview. The goal of this collaboration is to expose students to the medication distribution system and role of the pharmacist in an international practice setting with an aim of developing a more well-rounded, culturally aware pharmacist.

How was it done?

A memorandum of understanding was implemented between the two universities in May 2018 with the first UMSOP student visiting in September 2018. A professor from each university co-coordinates the internship. UMSOP students self-fund travel while UNICAM students self-fund and seek university support; funding is a barrier to pursuing the experience. Housing logistics for the students is also challenging. UMSOP students receive academic credit for the experience, requiring that the Italian site meet the advanced practice experience objectives.

What has been achieved?

The programme intended to exchange one-two students annually. After the inaugural student, eight UMSOP students pursued the UNICAM internship, resulting in six student placements at three Italian hospitals. One UNICAM student pursued a cardiology experience at an academic medical centre in Baltimore. UMSOP students perform a preceptor and site evaluation after the internship. 100% of students completed the evaluation with an overall evaluation score of strongly agree that the preceptor and site provided a positive experience. A structured interview with the UNICAM student indicated a greater understanding of clinical pharmacy practice and the role of a pharmacist on an interdisciplinary team, which may be used to further develop hospital pharmacy services in Italy.

What next?

This international exchange demonstrated a high degree of satisfaction among participants. While currently limited to students, this initiative should be considered for practising pharmacists. Sharing of best practices and the interchange of ideas may generate practice enhancements, lead to innovations, and stimulate personal growth.

Keywords | Educational programme, hospital pharmacy competencies, multidisciplinary team.

Conflict of interest | I have no potential conflict of interest to disclose.

INCLUSION OF PHARMACY STUDENTS IN AN INTERPROFESSIONAL TRAINING WARD PLACEMENT FOR HEALTHCARE STUDENTS IN SWEDEN

Authors: Matts Balgård, Maria Swartling, Srebenka Dobrić, Lena Klärer, Lina Karlsson

What was done?

Final year undergraduate pharmacy students, specialising clinical pharmacy, were given the opportunity to spend two weeks of their six months pharmacy practice to participate in an interprofessional training ward placement (ITWP) together with medical, nursing and physiotherapy students. During this two-week clinical placement, the students were collaboratively responsible for managing the care of geriatric inpatients while under supervision of licensed practitioners.

Why was it done?

ITWP for healthcare students is established at various teaching hospitals. However, to our knowledge, no such programme in Scandinavia has included pharmacy students. Clinical pharmacy is a growing profession in Sweden and other healthcare students will in the future work alongside clinical pharmacists. Therefore we set out to add pharmacy students to the ITWP team, believing that it would be a valuable experience for them to collaborate and share knowledge with students from other healthcare professions. Equally important, it is a way to promote the pharmacist’s competence and contribution to the multiprofessional healthcare team, prior to graduation.

How was it done?

A working group was formed consisting of teachers from the faculty of pharmacy, a student representative and a working
Good Practice Initiatives (GPIs)

Indicates GPI award nominee

Clinical pharmacist. The group developed the initiative, including among other things, prerequisites, an evaluation plan, a workflow tool for clinical rounds, and suggested tasks for pharmacy students during the placement.

What has been achieved?
The programme has been running for three semesters and 6–8 pharmacy students have participated in the ITWP each semester. The initiative has been evaluated using surveys. Participating pharmacy students expressed gaining new knowledge and better insight into nursing care and the roles of the other professions. Nursing students appreciated the support in medication management and medical students found the pharmacy students to be valuable discussion partners that could challenge their drug-related decisions. Tutors expressed that the pharmacy students brought a beneficial dynamic to the ITWP team.

What next?
The opportunity for students from different professions to work together with a common objective in a real-life setting gives them valuable insight into each other’s professional roles early in their careers. This good practice initiative could be used in other interprofessional training ward placements wishing to involve pharmacy students.

Keywords | Multidisciplinary team, hospital pharmacy education, training.
Conflict of interest | I have no potential conflict of interest to disclose.

An Observational Multicentre Study to Promote Independent Clinical Research and Education to Young Hospital Pharmacists: The QOSMOS Project

Authors: Daniele Mengato, Federica Milani, Laura Agnoletto, Nicoletta Freddi, Roberta Rampazzo, Vera Damuzzo

What was done?
In 2017 the Italian Society for Clinical Pharmacy and Therapeutics (SIFaCT) and the National Association of Hospital Pharmacy Students (ReNaSFO) established a joint action to improve students’ research competencies. To this end, we designed the QOSMOS study: "Quality Of life (QoL) in Multiple Sclerosis (MS): a Multicentre Observational Study".

Why was it done?
Recently, the national monitoring of Hospital Pharmacy Students (SHP) highlighted a lack of education in clinical research and in designing of independent studies among students. To fill this gap, we established a collaboration between Scientific Associations and Student Organisations.

How was it done?
The study has both educational and scientific objectives. Scientific objectives were to update data on QoL in MS and to correlate QoL to drug therapy. Regarding the educational challenge, every SHP participant received, by a panel of expert colleagues, the methodologic basis on observational studies and how to arrange teamwork activities. SHP could participate either as co-investigators or as members of teams which managed ethical approval, case report form (CRF), study monitor and data analysis. Investigators enrolled patients, collected clinical data and administrated a CRF, consisting of a questionnaire on QoL (MSQoLS4).

What has been achieved?
22 SHP from 16 Italian centres, equally distributed from Southern to Northern Italy, joined the project. 20 SHP participated as co-investigators, one was included in the Scientific Committee of the study and 1 participated in the team dedicated to the Ethical Committee. We enrolled 341 patients with relapsing/remitting MS from May 2018 to June 2019 (median=20 per centre). The study achieved primary and secondary endpoints and pointed out a significant decrease in QoL related to physical health in patients treated with teriflunomide compared to other oral drugs (p=0.002).

What next?
Results will be presented in a scientific paper for submission to a peer-reviewed journal. This final aspect of the project has an educational goal once again, namely to bring young colleagues closer to writing and disseminating science. As QOSMOS gained good results, a new study investigating the role of clinical pharmacist in the Infectious Disease Department is starting with the goal to investigate optimisation strategies for treatment of HIV-positive patients.

Keywords | Patient satisfaction, education, health-related quality of life.
Conflict of interest | I have no potential conflict of interest to disclose.

Do you have a Good Practice Initiative that you would like to share?

Visit the GPIs Portal and Database and tell us about it!

WWW.EAHP.EU