Effect of infusion time on the pharmacodynamic profiling of Meropenem in critically ill patients with Pseudomonas aeruginosa infections

Dolors Soy (dsoy@clinic.ub.es)
Pharmacy Service. Hospital Clinic Barcelona.
(CIBER de Enfermedades Respiratorias, 06/06/0028), IDIBAPS.
University of Barcelona, Barcelona, Spain

Abstract PHC003

BACKGROUND:
- Severe infections in critically ill patients due to P. aeruginosa require timely and adequate antibiotic treatment.
- The pharmacokinetic (PK) profile in ICU patients is too variable to optimize therapeutic outcome by using the standard dosages.
- The minimum inhibitory concentration (MIC) becomes a surrogate of the pharmacodynamics (PD) of the combining infecting bacteria and drug.
- Regarding carbapenems (meropenem: MEP), the PK/PD index to be optimized is the time for which the free serum drug concentration exceeds the MIC: \(t_{SS>\text{MIC}} \).
- Monte Carlo simulations facilitate to theoretically forecast the probability of PK/PD target attainment (PTA).

AIM:
This analysis evaluates through Monte Carlo simulations, the appropriateness of meropenem (MEP) extended IV infusions (EI) in critically ill patients with P. aeruginosa infections.

METHODS:
- A 5000 patient Monte Carlo simulations, based on previous population PK data from patients and creatinine clearance (CLcr): 80 mL/min, 40 mL/min and 20 mL/min, were performed to predict steady-state concentration (CSS)-time profiles (NONMEM v.6).
- Typical adult doses of MEP (MEP 1g IV q6h-q8h-q12h) were simulated as 0.5h, 1h, 2h and 3h extended IV infusions (EI).
- A range of MICs was studied, S: ≤ 2 mg/L, I: 4 mg/L and R: > 8 mg/L, according to the EUCAST cut-off for P. aeruginosa to MEP.
- The likelihood of target attainment (PTA_50: \(t_{SS>\text{MIC}} > 50\% \)), was calculated (SPlus 6.1) for each EI while keeping the interdose interval of 6h, 8h or 12h. A PTA_50 value > 90% was considered satisfactory.

RESULTS:
- In patients with CLcr around 80 mL/min:
 - High doses of MEP: 1g IV for 30 min/6h were needed to reach PTA_50 > 90% for MICs ≤ 2 mg/L. For higher MICs, even this dose was clearly inadequate. (Fig.1)
 \[\text{MIC} = 4 \text{ mg/L, PTA}_50 = 76.5\% \]
 \[\text{MIC} = 8 \text{ mg/L, PTA}_50 = 38.8\% \]
 - PTA_50 markedly increased by using EI up to 3 h. Considering 1g IV of MEP/6h and a MIC value of 4 mg/L:
 \(\text{PTA}_50: 85.2\% 94.8\% 100\% \)
 EI: 1 h 2 h 3 h (Fig.1; middle panel)
 - When using EI, lower MEP doses (1g IV/8h) could be prescribed without loss of efficacy for MIC values ≤ 2 mg/L.
 \(\text{PTA}_50: 89.7\% 95.1\% 99.1\% \)
 EI: 1 h 2 h 3 h (Fig.2; left panel)
- PTA_50 remained above 90% whilst Clcr = 40 mL/min, for the usual regimens (1g/6h or 8h 30 min) and MICs ≤ 2 mg/L. (Fig.3)
- When Clcr = 20 mL/min, MEP 1g IV/12h reached PTA_50 values slightly below or above 90% for MIC = 4 mg/L, despite infusion length. (Fig.4)

CONCLUSIONS:
- The probability of attaining PTA_50 for a given MIC rises as long as the infusion time increases.
- The length of infusion has less impact on PTA_50 in patients with moderate/severe renal impairment.
- MEP administered as an extended infusion of 3h might increase the likelihood of microbiological eradication and clinical outcome in ICU patients and high MICs for P. aeruginosa.

Author has no conflict of interest in this study.